complete your prog;

about resources, doubts and more!

Cisco

(350-901)

Developing Applications using Cisco Core Platforms and APIs
(DEVCOR)

Total: 383 Questions
Link:

Question: 1

A developer has created an application based on customer requirements. The customer needs to run the
application with the minimum downtime.

Which design approach regarding high-availability applications, Recovery Time Objective, and Recovery Point
Objective must be taken?

A.Active /passive results in lower RTO and RPO. For RPO, data synchronization between the two data centers must be
timely to allow seamless request flow.

B.Active/passive results in lower RTO and RPO. For RPO, data synchronization between the two data centers does not
need to be timely to allow seamless request flow.

C.Active/active results in lower RTO and RPO. For RPO, data synchronization between the two data centers does not
need to be timely to allow seamless request flow.

D.Active/active results in lower RTO and RPO. For RPO, data synchronization between the two data centers must be
timely to allow seamless request flow.

Answer: D

Explanation:

The correct answer is D, which states: "Active/active results in lower RTO and RPO. For RPO, data
synchronization between the two data centers must be timely to allow seamless request flow."

Here's why:

Active/Active vs. Active/Passive: Active/active deployments distribute application traffic across multiple active
instances simultaneously. This contrasts with active/passive setups where a standby instance remains idle until the
primary fails. Active/active provides inherent redundancy and faster failover, directly contributing to lower RTO
(Recovery Time Objective). RTO is the maximum acceptable downtime after a failure. With active/active, a failing
instance has minimal impact because other instances are immediately available to take the load, leading to near-
instant recovery.

Recovery Point Objective (RP0O): RPO defines the maximum acceptable data loss in the event of a failure. To ensure
minimal data loss with active/active deployment, data synchronization is crucial. Timely data synchronization between
all instances within the active/active configuration ensures that if one instance fails, the other instances hold near up-
to-date data, thus lowering the RPO. Without timely synchronization, failing over to another instance would result in
potential data loss since data might not be identical across all nodes.

Therefore, for seamless request flow and minimal data loss, timely data synchronization between data centers
is essential.

Option A is incorrect because while timely synchronization is required, active/passive doesn't yield the lowest RTO and
RPO values that active/active does. Options B and C are incorrect due to a combination of reasons. Active/passive
doesn't yield the lowest RTO or RPO. Additionally, timely data synchronization is imperative for achieving the lowest
RPO, regardless of the active/active or active/passive configuration in an HA setup.

In summary, for applications requiring minimal downtime, an active/active configuration with timely data
synchronization delivers the lowest RTO and RPO, meeting the customer's requirement for high availability.

Authoritative Links:

Microsoft Azure - High Availability:https://learn.microsoft.com/en-
us/azure/architecture/framework/resiliency/design-patterns#active-active (Focus on the active-active section)
AWS - High Availability (HA) Architecture:https://aws.amazon.com/architecture/well-architected/reliability/
Cloudflare - RTO and RPO: What's the Difference?: https://www.cloudflare.com/learning/cloud /what-is-rto-rpo/

https://learn.microsoft.com/en-us/azure/architecture/framework/resiliency/design-patterns#active-active
https://learn.microsoft.com/en-us/azure/architecture/framework/resiliency/design-patterns#active-active
https://learn.microsoft.com/en-us/azure/architecture/framework/resiliency/design-patterns#active-active
https://aws.amazon.com/architecture/well-architected/reliability/
https://aws.amazon.com/architecture/well-architected/reliability/
https://www.cloudflare.com/learning/cloud/what-is-rto-rpo/
https://www.cloudflare.com/learning/cloud/what-is-rto-rpo/
https://www.cloudflare.com/learning/cloud/what-is-rto-rpo/
https://www.cloudflare.com/learning/cloud/what-is-rto-rpo/

Question: 2

DRAG DROP -

An application is being built to collect and display telemetry streaming data. Drag and drop the elements of this stack from
the left onto the correct element functions on the right.

Select and Place:

Answer Area
10S-XE Device: I0S-XE Device visualization platform
Elasticsearch: Elasticsearch data collector
Kibana: Kibana data generator
Python Application: Python Application datastore
Answer:
Answer Area
Kibana: Kibana
Python Application: Python Application
I0S-XE Device: I0OS-XE Device
Elasticsearch: Elasticsearch
Explanation:

Kibana: Kibana.
Python Application: Python Application.
I0S-XE Device: I0S-XE Device.

ElasticSearch:ElasticSearch.

Question: 3

A cloud native project is being worked on in which all source code and dependencies are written in Python, Ruby, and/or
JavaScnpt. A change in code triggers a notification to the CI/CD tool to run the CI/CD pipeline.
Which step should be omitted from the pipeline?

A.Deploy the code to one or more environments, such as staging and/or production.
B.Build one of more containers that package up code and all its dependencies.
C.Compile code.

D.Run automated tests to validate the code.

Answer: C

Explanation:

The correct answer is C. Compile code. This is because Python, Ruby, and JavaScript are interpreted languages, not
compiled languages. Compiled languages, like Java or C++, require an explicit compilation step to translate human-
readable code into machine code before execution. Interpreted languages, on the other hand, are directly executed by an
interpreter, which reads and executes the code line by line. Therefore, a CI/CD pipeline for a project using only these
languages does not need a compilation stage. Instead, the source code is directly packaged, often into containers
alongside the interpreter and necessary dependencies, and then deployed. This speeds up the pipeline process by
removing a step that's irrelevant to the project's architecture. The automated tests are still necessary to ensure quality,
and deployment is the culmination of the CI/CD cycle.

Further Research:

Interpreted vs. Compiled Languages:https://www.geeksforgeeks.org/difference-between-compiled-and-
interpreted-language/

CI/CD Pipelines:https://www.redhat.com/en/topics/devops/what-is-ci-cd
Containerization:https://www.docker.com/resources/what-container/

Question: 4

Which two statements are considered best practices according to the 12-factor app methodology for application design?
(Choose two.)

A.Application code writes its event stream to stdout.

B.Application log streams are archived in multiple replicated databases.
C.Application log streams are sent to log indexing and analysis systems.
D.Application code writes its event stream to specific log files.

E.Log files are aggregated into a single file on individual nodes.

Answer: AC

Explanation:

The correct answers are A and C. The 12-factor app methodology emphasizes stateless processes and treat logs as
event streams. Option A aligns with this by stating that application code writes its event stream to stdout (standard
output). This enables applications to be easily monitored and have their logs captured by container orchestration
platforms like Kubernetes or cloud logging services, as these platforms generally gather output from stdout. This
approach decouples logging from the application itself and allows for flexibility in how logs are handled.

Option C, stating that application log streams are sent to log indexing and analysis systems, is also a best practice. The
12-factor methodology views logs as event streams that should be routed to external systems, rather than managed
directly by the application or stored in local files. By using indexing and analysis systems, developers can gain valuable
insights into application behavior, performance, and identify potential problems. Log aggregation and analysis are
important for monitoring and troubleshooting distributed applications.

https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
https://www.geeksforgeeks.org/difference-between-compiled-and-interpreted-language/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.docker.com/resources/what-container/

Option B, D, and E are not consistent with the 12-factor principles. B proposes archiving logs in databases, which
goes against the transient and event-stream view. D suggests logging to specific files which can be problematic
with container environments and can be harder to gather and analyze. E suggesting log aggregation on individual
nodes also goes against the central collection and analysis approach.

Authoritative links:

12-Factor App Methodology:https://12factor.net/ - This website provides a detailed explanation of each of the
twelve factors for building scalable and maintainable applications.

Cloud Native Computing Foundation (CNCF):https://www.cncf.io/ - The CNCF provides a vendor-neutral home
for many cloud native projects, including tools for logging and monitoring.

Question: 5

An organization manages a large cloud-deployed application that employs a microservices architecture. No notable issues
occur with downtime because the services of this application are redundantly deployed over three or more data center
regions. However, several times a week reports are received about application slowness. The container orchestration logs
show faults in a variety of containers that cause them to fail and then spin up brand new.

Which action must be taken to improve the resiliency design of the application while maintaining current scale?

A.Update the base image of the containers.
B.Test the execution of the application with another cloud services platform.
C.Increase the number of containers running per service.

D.Add consistent try/catch(exception) clauses to the code.

Answer: D

Explanation:
The correct answer is D. Add consistent try/catch(exception) clauses to the code. Here's why:

The problem isn't about redundancy or scaling, as the application already has multiple deployments across regions and
container restarts are happening as expected. The core issue is that container failures are causing a temporary
slowdown as new containers are brought online. This suggests that the application code is not handling exceptions
gracefully. When an unexpected condition arises (like a temporary network hiccup, a missing dependency, or an invalid
data input), the microservices are crashing instead of recovering, triggering the container restarts.

Adding try/catch blocks around potentially problematic code segments allows the application to intercept errors,
handle them gracefully, and prevent the microservice from crashing. Instead of abruptly failing, the service can log the
error, retry the operation, or return an appropriate error response. This significantly improves application resilience by
minimizing failures and preventing the cascading impact of uncontrolled exceptions. Options A, B, and C address
different aspects but do not address the root cause of error handling. Option A deals with potential image issues but
does not prevent runtime exceptions. Option B is testing, which would be an additional solution but would not address
runtime errors. Option C addresses scaling and also does not directly prevent errors. Therefore, the most effective
immediate action to reduce container restarts and improve responsiveness is to focus on robust exception handling
within the application code.

Here are some authoritative resources to further explore this topic:

Microsoft Documentation on Exception Handling:https://learn.microsoft.com/en-
us/dotnet/standard/exceptions/ This article covers exception handling in .NET, but the concepts are broadly
applicable to any programming language.

https://12factor.net/
https://www.cncf.io/
https://learn.microsoft.com/en-us/dotnet/standard/exceptions/
https://learn.microsoft.com/en-us/dotnet/standard/exceptions/
https://learn.microsoft.com/en-us/dotnet/standard/exceptions/
https://learn.microsoft.com/en-us/dotnet/standard/exceptions/

Google Cloud Architecture Center on Reliability:https://cloud.google.com/architecture/reliability Explores general
principles and patterns for building reliable cloud applications, including error handling.

AWS Well-Architected Framework on Reliability Pillar:https://aws.amazon.com/architecture/well-
architected/reliability/ Provides guidance on designing reliable systems on AWS, including strategies for
handling failures.

Kubernetes Best Practices on Resource Management:
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ Although this is about managing
resources in containers, understanding this will allow a better understanding of issues that cause restarts and how
exception handling can address these issues.

In summary, well-implemented exception handling is a key practice for building resilient microservices, helping
to minimize downtime and improve overall application stability and performance.

Question: 6

How should a web application be designed to work on a platform where up to 1000 requests per second can be served?

A.Use algorithms like random early detection to deny excessive requests.

B.Set a per-user limit (for example, 5 requests/minute/user) and deny the requests from the users who have reached
the limit.

C.Only 1000 user connections are allowed; further connections are denied so that all connected users can be served.

D.All requests are saved and processed one by one so that all users can be served eventually.

Answer: B

Explanation:

The correct answer is B. Set a per-user limit (for example, 5 requests/minute/user) and deny the requests from
the users who have reached the limit. This approach, known as rate limiting, is a fundamental technique for managing
web application traffic and ensuring fair resource allocation.

Option A, using algorithms like Random Early Detection (RED), is primarily used for network congestion control, not for
application-level request management. RED focuses on dropping packets at the network layer to prevent network
overload; it's not directly applicable to managing user requests within an application. Option C, limiting to 1000
concurrent connections, could lead to unfair service as new users might be entirely blocked even if existing connections
are idle. Option D, queuing all requests, can result in significant latency if there are more than 1000 requests in a second,
potentially leading to a backlog and poor user experience.

Rate limiting, option B, provides a more granular control. By setting a per-user limit, the system prevents any single
user from overwhelming the application with requests, ensuring that others receive their fair share of resources. This
is a common strategy to mitigate denial-of-service (DoS) attacks or accidental traffic spikes caused by a single user. It
allows for continuous service for most users while preventing resource exhaustion. Key benefits include fairness,
improved response times, and enhanced security.

For further research, see these authoritative resources:

Cloudflare's article on Rate Limiting:https://www.cloudflare.com/learning/ddos/rate-limiting/

AWS documentation on API Gateway Throttling:
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html Google
Cloud documentation on Rate Limiting:https://cloud.google.com/api-gateway/docs/rate-limiting

https://cloud.google.com/architecture/reliability
https://aws.amazon.com/architecture/well-architected/reliability/
https://aws.amazon.com/architecture/well-architected/reliability/
https://aws.amazon.com/architecture/well-architected/reliability/
https://aws.amazon.com/architecture/well-architected/reliability/
https://aws.amazon.com/architecture/well-architected/reliability/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://www.cloudflare.com/learning/ddos/rate-limiting/
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://cloud.google.com/api-gateway/docs/rate-limiting

Question: 7

An organization manages a large cloud-deployed application that employs a microservices architecture across multiple
data centers. Reports have been received about application slowness. The container orchestration logs show that faults
have been raised in a variety of containers that caused them to fail and then spin up brand new instances.

Which two actions can improve the design of the application to identify the faults? (Choose two.)

A.Automatically pull out the container that fails the most over a time period.

B.Implement a tagging methodology that follows the application execution from service to service.
C.Add logging on exception and provide immediate notification.

D.Do a write to the datastore every time there is an application failure.

E.Implement an SNMP logging system with alerts in case a network link is slow.

Answer: BC

Explanation:

Okay, let's break down why options B and C are the correct choices for identifying faults in the described
microservices application, and why the others are less effective.

Why B is correct: Implementing a tagging methodology (also known as tracing) is crucial for understanding the flow of
arequest through a complex microservices architecture. When a request enters the system, it's assigned a unique
identifier (tag). This tag is then propagated as the request moves from one service to another. This allows you to
reconstruct the entire path of the request, pinpointing exactly which service(s) are experiencing issues (latency, errors,
etc.). Without tracing, identifying bottlenecks across multiple services becomes exceptionally difficult, making fault
diagnosis a guessing game. It helps connect the dots when problems occur.
https://opentelemetry.io/docs/concepts/tracing/

Why Cis correct: Adding logging on exceptions and providing immediate notifications is a cornerstone of effective
monitoring and error handling in cloud environments. When an exception occurs within a service, capturing detailed
information about the error (type, stack trace, timestamp, etc.) is invaluable for debugging and root cause analysis.
Furthermore, sending immediate notifications (alerts) to operations teams enables them to react swiftly, minimizing the
impact of errors. This pro-active approach enables quick problem resolution. https://cloud.google.com/logging/docs/

Why A is incorrect: Automatically removing a container based on failure frequency is a reactive, not a diagnostic,
measure. While it may temporarily alleviate an issue, it doesn't identify the underlying cause of the failures. In fact, a
container failing repeatedly might signal a deeper configuration or code problem that needs investigation, not just a
band-aid solution. It does not contribute towards fixing the root cause.

Why D is incorrect: Writing to a datastore on every application failure creates unnecessary overhead and can
potentially exacerbate performance issues. Moreover, this approach does not offer specific insight into where the fault
lies within the service flow, unlike tracing. Storing error logs to datastore is a better fit.

Why E is incorrect: SNMP is a protocol mainly used for network device monitoring. While network slowness could
indirectly affect the application, focusing on service-level logging and tracing is more relevant for diagnosing
application-specific faults. Slow networks may not necessarily be the primary reason for application slowness. It is
an infra issue, not an application issue.

In summary, options B and C are critical tools for gaining visibility into a distributed microservices architecture and
enabling proactive fault identification. Tracing gives you the big picture, while detailed logging with notifications
facilitates granular understanding and quick responses to exceptions.

https://opentelemetry.io/docs/concepts/tracing/
https://cloud.google.com/logging/docs/

Question: 8

Which two situations are flagged by software tools designed for dependency checking in continuous integration
environments, such as OWASP? (Choose two.)

A.publicly disclosed vulnerabilities related to the included dependencies
B.mismatches in coding styles and conventions in the included dependencies
C.incompatible licenses in the included dependencies

D.test case failures introduced by bugs in the included dependencies

E.buffer overflows to occur as the result of a combination of the included dependencies

Answer: AE

Explanation:

Here's a breakdown of why options A and E are correct, and why the others aren't, in the context of
dependency checking tools within CI/CD:

Dependency checking tools in continuous integration (CI) environments, like those guided by OWASP guidelines,
primarily focus on security and legal compliance regarding the third-party libraries your application uses. Option A
is correct because a crucial function of these tools is to identify publicly known vulnerabilities in your dependencies.
These vulnerabilities, often listed in databases like the National Vulnerability Database (NVD), represent potential
security risks that attackers could exploit. Therefore, flagging these vulnerabilities is essential for proactive security
management. Similarly, option E is correct. Dependency interactions can sometimes introduce unintended behavior,
such as buffer overflows, by using components with different assumptions or handling data inconsistently. Detection
of these interactions are important in the CI environment.

Option B, mismatches in coding styles, isn’t typically the concern of dependency checking tools. They focus more on
functionality and security than stylistic adherence; this is usually addressed by code linters and style checkers. Option C,
while important, is not directly detected by typical dependency checking tools; license compliance tools or processes
handle this as a separate compliance check. Option D, test case failures, are typically identified through unit tests and
other testing methods, not dependency checks, which focus on known issues in used code rather than the results of a
tests.

Therefore, the core task of dependency checkers lies in identifying security vulnerabilities (A) and potential runtime
errors like overflows (E) introduced by combined dependencies, thereby strengthening the security posture of the
application.

Authoritative Links for further research:

OWASP Dependency-Check:https://owasp.org/www-project-dependency-check/
National Vulnerability Database (NVD):https://nvd.nist.gov/
Snyk (Commercial Dependency Scanner):https://snyk.io/ (Example of a tool following OWASP principles).

CISA - Known Exploited Vulnerabilities Catalog:https: //www.cisa.gov/known-exploited-vulnerabilities-
catalog

Question: 9

A network operations team is using the cloud to automate some of their managed customer and branch locations.

They require that all of their tooling be ephemeral by design and that the entire automation environment can be recreated
without manual commands. Automation code and configuration state will be stored in git for change control and versioning.
The engineering high-level plan is to use VMs in a cloud-provider environment, then configure open source tooling onto these
VMs to poll, test, and configure the remote devices, as well as deploy the tooling itself.

https://owasp.org/www-project-dependency-check/
https://nvd.nist.gov/
https://snyk.io/
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog

Which configuration management and/or automation tooling is needed for this solution?

A.Ansible

B.Ansible and Terraform
C.NSO

D.Terraform

E.Ansible and NSO

Answer: B

Explanation:

The correct answer is B. Ansible and Terraform. Here's why:

The scenario calls for ephemeral infrastructure that can be recreated programmatically, along with configuration
management for the tools deployed on those VMs. Terraform excels at infrastructure as code (IaC). It can provision
and manage the virtual machines in the cloud environment, ensuring that the entire automation environment, from
VMs to network configurations, is defined in code. This addresses the requirement for ephemeral design and fully
automated recreation.

Ansible, on the other hand, is a powerful configuration management and automation tool. After Terraform
provisions the VMs, Ansible can be used to configure the operating systems, install the necessary open-source tools
(like monitoring or testing applications), and manage their configurations. It ensures that the required tools are
correctly set up and consistently configured across all VMs.

Both tools complement each other in this solution. Terraform manages the lifecycle of the infrastructure (VMs), while
Ansible manages the software and configurations on those VMs. This separation of concerns promotes a more
manageable and scalable environment. Using just Ansible wouldn't address the ephemeral infrastructure requirement,
and using just Terraform would leave the configuration of tools on the VMs unmanaged. NSO (Network Services
Orchestrator) is not appropriate here as its primary function is network service orchestration and automation on
Cisco devices.

Therefore, combining Terraform for infrastructure provisioning and Ansible for configuration management provides a
complete solution. They both use declarative configurations that make automation repeatable and version-controlled
through Git.

Authoritative Links:

Terraform:https://www.terraform.io/ - Official website for Terraform documentation and tutorials.
Ansible:https://www.ansible.com/ - Official website for Ansible documentation, use cases, and tutorials.

This combined approach allows the network operations team to achieve their goal of a fully automated,
ephemeral, and reproducible automation environment.

Question: 10

DRAG DROP -
Drag and drop the git commands from the left into the correct order on the right to create a feature branch from the

master and then incorporate that feature branch into the master.
Select and Place:

https://www.terraform.io/
https://www.ansible.com/

Answer Area

git branch -d feature step 1
qit checkout -b feature master step 2
git checkout master step 3
git push origin master step 4
ait merge —-no-ff feature step 5
Answer:
Answer Area
git checkout -b feature master
git checkout master
git merge -—-no-ff feature
git push origin master
git branch -d feature
Explanation:

Step 1. git checkout -b feature master (Create new branch called feature and switch) Step 2.
git checkout master (switch back to Master branch)

Step 3. git merge -no-ff feature (Merge changes from feature to master branch) Step 4 .git
push origin master (Push changes to remote repo)

Step 5. git branch -d feature (Delete the branch called feature)

Question: 11

application is hosted on Google Kubernetes Engine. A new JavaScript module is created to work with the existing
application. Which task is mandatory to make the code ready to deploy?

An

A.Create a Dockerfile for the code base.
B.Rewrite the code in Python.
C.Build a wrapper for the code to "containerize" it.

D.Rebase the code from the upstream git repo.

Answer: A

Explanation:

The correct answer is A, creating a Dockerfile for the code base. This is mandatory because Kubernetes, including
Google Kubernetes Engine (GKE), primarily manages and deploys applications packaged as containers. A Dockerfile is
a text document containing instructions to build a Docker image, which is a lightweight, stand-alone executable
package that includes everything needed to run the application. Options B, C, and D are not mandatory. Rewriting the
code in Python (B) is unnecessary if the JavaScript module functions correctly. While you could create a "wrapper” (C),
this step is effectively accomplished by Dockerizing the application. Rebasing the code from an upstream Git repo (D)
is unrelated to preparing the application for deployment within a containerized environment. A Docker image ensures
portability and consistency by encapsulating the code, its dependencies, and runtime environment. Kubernetes then
uses these images to deploy and scale applications across clusters. Without containerization, Kubernetes cannot
directly manage and run the JavaScript module as it lacks the necessary isolation and packaging to work within the
container orchestration system. A Dockerfile is crucial for automating the image creation process, guaranteeing
repeatable builds and streamlined deployments on GKE. Therefore, containerization via a Dockerfile is the
fundamental step before deploying applications on Kubernetes and GKE.

Further Research:

Docker Documentation:https://docs.docker.com/
Kubernetes Documentation:https://kubernetes.io/docs/
Google Kubernetes Engine (GKE) Documentation:https://cloud.google.com/kubernetes-engine /docs

Question: 12

DRAG DROP -
Drag and drop the steps-from the left into the correct sequence on the right to-describe how to-use Git to- maintain the

current HEAD and revert back to a previous commit, while undoing all intermediate commits.
Select and Place:

Answer Area
git commit -m “Revert to 56e05fced commit” step 1
git reset —soft HEAD@{1} step 2
gitlog step 3
git reset —hard 56e05fced step 4
ait status step 5

https://docs.docker.com/
https://kubernetes.io/docs/
https://cloud.google.com/kubernetes-engine/docs

Answer:

Answer Area
git log step 1
git reset -hard 56e05fced step 2
qit reset ——soft HEAD@{1} step 3
git status step 4
git commit -m “Revert to 56e05fced commit” step 5
Explanation:

Step1. git log

Step2. git reset --hard 56e05fced
Step3. git reset --soft HEAD@ 1
Step4. git status

Step5. git commit -m "Revert to 56e05fced commit"

Question: 13

Which database type should be used with highly structured data and provides support for ACID transactions?

A.time series
B.document
C.graph

D.relational

Answer: D

Explanation:

The correct answer is D. Relational. Relational databases are specifically designed to handle highly structured data.
This structure is achieved through the use of tables with predefined schemas, consisting of rows and columns, where
each column represents a specific attribute and each row a record. A key strength of relational databases is their
support for ACID transactions. ACID stands for Atomicity, Consistency, Isolation, and Durability. These properties
ensure data validity and reliability, especially in environments with concurrent operations. Atomicity guarantees that a
transaction is treated as a single unit of work (all changes succeed or none do). Consistency ensures that transactions
maintain data integrity, moving the database from one valid state to another. Isolation keeps transactions separate and
avoids interference from concurrent operations. Durability ensures that committed changes remain persistent even in
case of system failures.

Other database types have different strengths. Time series databases are optimized for time-stamped data, document
databases handle semi-structured data in JSON or XML, and graph databases are suitable for interconnected data
relationships. These aren't designed for the same level of structure and transactional guarantees as a relational
database. Therefore, for structured data requiring ACID transactional support, relational databases are the optimal
choice. For deeper understanding, you can review resources from Oracle
(https://docs.oracle.com/cd/E11882_01/server.112/e10729 /transact.htm), a leading relational database provider, or
from Microsoft on SQL Server (https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-
locking-and-row-versioning-guide?view=sql-server-ver16).

Question: 14

Where should distributed load balancing occur in a horizontally scalable architecture?

A firewall-side/policy load balancing
B.network-side/central load balancing
C.service-side/remote load balancing

D.client-side/local load balancing

Answer: D

Explanation:

The correct answer is D. client-side/local load balancing. This approach distributes load balancing logic directly to
the client application. In a horizontally scalable architecture, distributing requests from the client rather than relying
on a central load balancer is crucial for maximizing flexibility, reducing latency, and avoiding single points of failure.
Client-side load balancing allows the client to have awareness of available service instances. It can then choose the
optimal instance based on factors like latency or load. With this approach, clients typically maintain a list of available
servers, and employ algorithms (like round-robin or weighted random) to distribute requests. This eliminates the
overhead and potential bottleneck of a central load balancer, particularly as the system scales out. Central load
balancers can become single points of contention. Local load balancing enhances resilience because if a service
instance goes down, the client can redirect requests to another healthy instance, without needing to notify and rely on
a central intermediary. It is important to remember this distributes complexity from a single point to each client,
which might involve added considerations in client implementation. This method is also suitable for microservices-
based systems where multiple instances of services are deployed.For further research, consider exploring these
resources:Load Balancing MethodsClient-Side Load BalancingHorizontal Scaling

Question: 15

Which two statements about a stateless application are true? (Choose two.)

A.Different requests can be processed by different servers.

B.Requests are based only on information relayed with-each request.

C.Information about earlier requests must be kept and must be accessible.

D.The same server must be used to process all requests that are linked to the same state.

E.No state information can be shared across servers.

Answer: AB

Explanation:

https://docs.oracle.com/cd/E11882_01/server.112/e10729/transact.htm
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide?view=sql-server-ver16
https://www.nginx.com/resources/glossary/load-balancing/
https://martinfowler.com/articles/patterns-of-distributed-systems/client-side-load-balancer.html
https://aws.amazon.com/what-is/horizontal-scaling/

The correct options are A and B. A stateless application, by definition, does not maintain any session data or information
about prior interactions. Option A is correct because each request is self-contained and can be handled by any available
server instance. Load balancing is simplified, as requests can be routed to different servers without concern for session
affinity. Option B is also correct; the server only requires information provided within the current request itself to
process it. The request carries all necessary data. There is no need for the server to refer to past interactions or
maintained state. This self-contained nature allows for easy scaling and resilience. Option C is incorrect because
stateless applications explicitly avoid keeping

information about prior requests. Option D is incorrect because stateful applications are the ones requiring the same
server for requests related to the same state. Option E is not entirely true, state information is simply not maintained at
the application layer; other services like databases or caching systems can manage the state.

Further research on stateless applications can be found here:

AWS:https://aws.amazon.com/what-is/stateless-application/
Microsoft Azure:https://learn.microsoft.com/en-us/azure/architecture/best-practices/stateless-applications
Google Cloud:https://cloud.google.com/architecture/best-practices-for-building-stateless-applications

Question: 16

Which statement about microservices architecture is true?

A.Applications are written in a single unit.
B.It is a complex application composed of multiple independent parts.
C.Itis often a challenge to scale individual parts.

D.A single faulty service can bring the whole application down.

Answer: B

Explanation:

The correct answer is B, "It is a complex application composed of multiple independent parts." Microservices
architecture fundamentally breaks down a monolithic application into a suite of small, independent services.

Each service focuses on a specific business capability and can be developed, deployed, and scaled

independently. This approach promotes modularity and allows for greater flexibility and agility in

development. Option A is incorrect because microservices explicitly avoid a single monolithic unit. Option C is incorrect,
as a key benefit of microservices is the ability to scale individual components as needed. Option D is also incorrect, as a
well-designed microservices architecture aims for fault isolation, meaning that failure in one service should not
necessarily bring down the entire application. Robustness is achieved through techniques like circuit breakers and
graceful degradation. The independent nature of microservices allows for teams to work on different aspects of the
application simultaneously, enhancing parallel development efforts. Furthermore, this architecture enables the
utilization of different technologies for different services based on the most suitable tool for the specific job. This offers
a significant advantage in adapting to changing technology landscapes.

Further research can be conducted on the following resources:

Microservices.io: This site provides comprehensive information on microservices architecture, including
patterns, principles, and benefits: https://microservices.io/

Martin Fowler's Blog: Martin Fowler, a pioneer in software architecture, has written extensively on
microservices: https://martinfowler.com/microservices/

AWS Microservices: Amazon Web Services provides resources on using microservices architecture within their
cloud environment: https://aws.amazon.com/microservices/

https://aws.amazon.com/what-is/stateless-application/
https://learn.microsoft.com/en-us/azure/architecture/best-practices/stateless-applications
https://learn.microsoft.com/en-us/azure/architecture/best-practices/stateless-applications
https://cloud.google.com/architecture/best-practices-for-building-stateless-applications
https://microservices.io/
https://martinfowler.com/microservices/
https://aws.amazon.com/microservices/

Microsoft Azure Microservices: Microsoft's documentation for microservices on Azure provides another view
of its implementation in their cloud: https://azure.microsoft.com/en-us/solutions/microservices/These links
offer detailed explanations and various perspectives on this crucial architectural paradigm.

Question: 17

DRAG DROP -

Drag and drop the characteristics from the left onto the correct data processing techniques on the right, in the context of
GDPR.

Select and Place:

Answer Area

processing of personal data in such a manner that the
personal data can no longer be attributed to a specific
data subject without the use of additional information

Data anonymization

data stripped of sufficient elements such that the data
subject can no longer be identified

can be re-identified

Data pseudonymization

cannot be re-identified

Answer:

https://azure.microsoft.com/en-us/solutions/microservices/

Data anonymization

cannot be re-identified

data stripped of sufficient elements such that the data
subject can no longer be identified

Data pseudonymization

can be re-identified

processing of personal data in such a manner that the
personal data can no longer be attributed to a specific
data subject without the use of additional information

Explanation:

Data anonymization:- cannot be re-identified.

data stripped of sufficient element Such that the data Subject Can no longer be identified.

Data pseudonymization:- can be re-identified-

processing of personal data in such a manner that the personal data can no longer be attributed to a specific data
subject without the use of additional information.

Question: 18 Which
two data encoding techniques are supported by gRPC? (Choose two.)

AXML

B.JSON

C.ASCII

D.ProtoBuf

E.YAML

Answer: BD

Explanation:

The correct answer is B (JSON) and D (ProtoBuf). gRPC, a high-performance, open-source universal RPC framework,
primarily uses Protocol Buffers (ProtoBuf) for data serialization by default. ProtoBuf provides a compact, efficient,
and language-neutral mechanism to define data structures and serialize data for

transmission over the network, thus minimizing bandwidth consumption and improving performance. While ProtoBuf
is the primary and highly recommended encoding for gRPC, JSON is also supported as an alternative data encoding
format. This flexibility allows gRPC to integrate with systems that already utilize JSON or where human-readability is a
priority. JSON's text-based nature makes it suitable for debugging and quick integrations, though it generally results in
larger message sizes compared to ProtoBuf. XML, ASCII, and YAML are not officially supported encoding formats within
the gRPC framework. gRPC focuses on binary and highly performant encodings, making options like ProtoBuf a priority.
While one could theoretically implement custom serialization, it goes beyond the supported framework and isn't the
typical usage. ProtoBuf benefits gRPC by providing stronger typing and compatibility, enhancing developer productivity
and ensuring reliable data exchange between services. For further research, refer to the official gRPC documentation
https://grpc.io/docs/what-is-grpc/core-concepts/ and specific details on supported encodings in the gRPC
specification. Information on protocol buffers can be found at https://developers.google.com/protocol-buffers.

Question: 19

%_ Internet

Refer t mﬁgglt Which two functions are performed by the load B2 =
Internet to an application hosted on the file server farnlzaad)sB@]@n cer

A.Terminate the TLS over the UDP connection from the router and originate an HTTPS conneEiUlﬂd%@W@&eEa rm

server.
B.Terminate the TLS over the UDP connection from the router and originate an HTTP connection to the selected server.
C.Terminate the TLS over the TCP connection from the router and originate an HTTP connection to the selected server.

D.Terminate the TLS over the TCP connection from the router and originate an HTTPS connection to the selected
server.

E.Terminate the TLS over the SCTP connection from the router and originate an HTTPS connection to the selected
server.

Answer: CD

Explanation:

C.Terminate the TLS over the TCP connection from the router and originate an HTTP connection to the selected
server.

D.Terminate the TLS over the TCP connection from the router and originate an HTTPS connection to the selected
server.

Question: 20
Which transport protocol is used by gNMI?

https://grpc.io/docs/what-is-grpc/core-concepts/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

AHTTP/2
BHTTP 1.1
C.SSH
D.MQTT

Answer: A

Explanation:

The correct answer is A. HTTP/2. gNMI (gRPC Network Management Interface) leverages gRPC as its underlying
framework. gRPC, in turn, commonly uses HTTP/2 as its transport protocol. This choice is fundamental because HTTP/2
offers significant performance benefits over HTTP 1.1, such as multiplexing, header compression, and server push, all of
which are crucial for high-throughput, low-latency communication needed in network management scenarios.
Multiplexing allows multiple requests and responses to share a single TCP connection, reducing the overhead of
establishing new connections for each interaction. Header compression minimizes the size of transmitted headers,
further optimizing bandwidth usage. Server push enables the server to proactively send data that it anticipates the
client will need, reducing latency. These advantages make HTTP/2 the ideal transport for gNMI, which frequently
handles large volumes of telemetry data and configuration updates. While other protocols like SSH and MQTT have their
specific uses, they are not part of the gNMI standard. SSH is primarily for secure shell access, and MQTT is often used in
IoT scenarios with constrained devices and unreliable networks. In contrast, gNMI is intended for robust, high-
performance network management within a data center or service provider environment where HTTP/2's
characteristics are a better fit.

Authoritative Links for Further Research:

gRPC Documentation:https://grpc.io/docs/ - Provides comprehensive information about gRPC, including its usage of
HTTP/2.

HTTP/2 RFC:https://datatracker.ietf.org/doc/html/rfc7540 - The official specification for HTTP/2. gNMI
Specification:https://github.com/openconfig/gnmi - The official repository for the gNMI specification, outlining its
reliance on gRPC.

Cisco DevNet:https://developer.cisco.com/ - Explore Cisco's developer resources to find practical use cases and
documentation related to gNMI and its implementation on Cisco platforms.

Question: 21
DRAG DROP -

https://grpc.io/docs/
https://datatracker.ietf.org/doc/html/rfc7540
https://github.com/openconfig/gnmi
https://developer.cisco.com/

Resource Owner

\, v

4 N
User Agent Authorization
(Browser) Server

i)¢ L

7 A

Client

OAuth2 three-legged authorization code grant.

Refer to the exhibit. Drag and drop the steps from the left into the correct order of operation on the right for a

successful OAuth?2 three-legged authorization code grant flow.
Select and Place:

Answer Area

Client initiates the flow. step 1

The authorization server authenticates the client,
validates details sent, and responds with an access step 2

token.

The authorization server redirects the user-agent ien
back to the client using the redirection URI provided, P
The authorization server authenticates the resource

step 4
owner.
The client requests an access token from the
authorization server’s token endpoint. step 5

Answer:

Client initiates the flow.

The authorization server authenticates the resource
owner.

The authorization server redirects the user-agent
back to the client using the redirection URI provided|

The client requests an access token from the
authorization server’s token endpoint.

The authorization server authenticates the client,
validates details sent, and responds with an access
token.

Explanation:

1. Client initiates the flow.

2. The authorization server authenticates the resource owner.

3. The authorization server redirects the user-agent back to the client using the redirection URI provided. 4. The

client requests an access token from the authorization server's token endpoint.

5. The authorization server authenticates the client, validates details send, and responds with an access token.

Question: 22

A developer plans to create a new bugfix branch to fix a bug that was found on the release branch. Which
command completes the task?

A.git checkout -t RELEASE BUGFIX
B.git checkout -b RELEASE BUGFIX
C.git checkout -t BUGFIX RELEASE
D.git checkout -b BUGFIX RELEASE

Answer: D

Explanation:

The correct command is git checkout -b BUGFIX RELEASE. Here's why:

The goal is to create a new branch named BUGFIX starting from the RELEASE branch. The git checkout command is
used for switching between branches and creating new ones. The -b option specifically instructs Git to create a new
branch. The syntax for creating a new branch and switching to it is git checkout -b <new_branch_name>
<starting_point_branch>. Therefore, git checkout -b BUGFIX RELEASE correctly achieves the desired outcome,
creating a branch named BUGFIX based on the current state of the RELEASE branch and then switching to it.

Option A, git checkout -t RELEASE BUGFIX, attempts to track a remote branch with a local name, which is not the
desired behavior here. Option B, git checkout -b RELEASE BUGFIX, reverses the desired action; it will create a
branch RELEASE starting from BUGFIX. Option C, git checkout -t BUGFIX RELEASE, also attempts to track a
remote branch, which is incorrect in this scenario.

The process of branching is fundamental to version control, enabling developers to work on features, bug fixes, or
experiments in isolation before merging them into the main codebase. This facilitates parallel development,
reduces conflicts, and provides a structured way to manage changes. Branching is a core component of Git's
workflow and is widely used in software development teams.

Here are some helpful resources for further understanding of Git and branching:

1. Official Git Documentation on Branching:https://git-scm.com/book/en/v2 /Git-Branching-Basic-
Branching-and-Merging

2. Atlassian Git Branching Tutorial:https://www.atlassian.com/git/tutorials/using-branches 3. GitHub
Guides on Git Branching:https://guides.github.com/introduction/flow/

Question: 23
DRAG DROP -

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.atlassian.com/git/tutorials/using-branches
https://guides.github.com/introduction/flow/

/dna/intent/api/vl/wireless/profile Get Wireless Profile

Gets either one or all the wireless network profiles if no name is provided for network-profile.
Parameters
Name

Description

profileName Default value:
string

(query)
Responses
Code Description

200

The request was successful. The result is contained in the response body.

Example Value Model

“profileDetails”: {
“name”: “string”,
“wsites”: [
“string”
1,
“WssidDetails”: [
{
“name”: “string”,
" type ”n - \\Gue St ” -
“enabledFabric”: true,

“flexConnect”: {
“enableFlexConnect”: true,
“localToVlan”: 0
},

“InterfaceName”: “string”

import requests
import json

def get dnac wireless profiles():

Ermys
url = “https://sandboxdnac2.cisco.com/dna/intent/api/vl” \
+ “/wireless/profile?<iteml>=ChicagoCampus|”

print (token)
payload = {}
headers = {
‘x-auth-token’: token

}

response = requests.request (“GET”, url, headers=headers, data = paylecad)
response.raise_ for status()
return response.json() [0] [‘<item 2>’'][' <item 3>'] \
[€item 4>]['<item 5>’] [“<item 6>”]
except Exception as e:
print(e)

def create_dnac_token():

try:
url = “https://sandboxdnac2.cisco.com/dna/system/api/vl/auth/token”

payload = {}

headers = {

‘Authorization’: ‘Basic ZGV2bmVOdXNlcjpDaXNjbzEyMyE= ‘',
‘Content-Type’: ‘application/json’

}

response = requests.request (“POST”, url, headers=headers, data = payload)
response.raise_for_status()
return response.json() [“Token”]
except Exception as e:
print (e)

i fo name - W main ",
token = create dnac token()
print (get dnac wireless profiles())

Refer to the exhibit. The Python script is supposed to make an API call to Cisco DNA Center querying a wireless profile for the
"ChicagoCampus" and then parsing out its enable FlexConnect value. Drag and drop the parts of the Python code from the left
onto the item numbers on the right that match the missing sections in the exhibit.

Select and Place:

Answer Area

>
=
%]
g
(]
1

Answer Area

<item 1>

<item 2>

<item 4>

<item 6>

Question: 24

#k8s—-nginx.yml
apivVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 1
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
— name: nginx
image: nginx
PETLLS:
— name: nginx-port
containerPort: 80
apiVersion: vl
kind: Service
metadata:
name: load-balancer
spec:
selector:
app: nginx
ports:
— perk: B8
targetPort: nginx-port
type: LoadBalancer

4

Refer to the exhibit. The presented application consists of a Nginx container and a load balancer service. Which
GitLab CI/CD configuration implements the Kubernetes deployment?
A.

Deploy:
stage: Deployment
script:
— kubectl exec -k k8s—nginy wml
B.
Deploy:
stage: Deployment
script:
— kubectl apply —-f k8s—nginx.yml
C.
Deploy:
stage: Deployment
sScEipt =
— kubectl apply -k kf8s-nginx.yml /patch/to/cluster
D.)
Deploy:
stage: Deployment
script:
— kubectl exec -f k8s-nginx.yml /patch/to/cluster
Answer: B
Explanation:
Reference:

https://kubernetes.io/docs/reference/kubectl /kubectl/

Question: 25

An application has these characteristics:

* provide one service or function

* distributed database

* API gateway

* central repository for code

* configuration database

* uses session management

Which two design approaches contribute to the scalability of the application? (Choose two.)

A.session management in a stateless architecture
B.modular design iteration

C.distributed computing with tightly coupled components
D.built to scale based on a star topology

E.planned before the first device is deployed

Answer: AB

Explanation:

Here's a justification for why options A and B are the correct choices for enhancing application scalability:

A. Session management in a stateless architecture: Statelessness is a cornerstone of scalable systems. When session
information isn't tied to a specific server, requests can be routed to any available instance. This eliminates bottlenecks
caused by single servers managing all session data and allows for horizontal scaling (adding more server instances).
Session management, typically implemented through techniques like tokens or distributed caches, then manages the
user session independent of the server, enabling seamless scaling. This is unlike stateful architectures where the server
maintains the session information, hindering scalability by making load balancing difficult.

B. Modular design iteration: Modular design, where an application is broken into independent, smaller components

or modules, promotes scalability because individual modules can be scaled independently. This allows for scaling only
the necessary parts of the application when demand changes, rather than scaling the entire application. This approach
also promotes easier development, debugging, and code reuse. It promotes iterative development where new features
can be added and existing modules can be modified without affecting other areas.

Why the other options are incorrect:

C. Distributed computing with tightly coupled components: Tightly coupled components hinder scalability. If one
component fails or needs to scale, it often affects other components, creating a single point of failure and limiting
independent scaling. Distributed systems need components to be loosely coupled to improve scalability.

D. Built to scale based on a star topology: Star topologies can create central bottlenecks as all nodes depend on the
central hub. While a star topology is relevant to network architecture, it doesn't generally apply to the application
architecture as related to scalability.

E. Planned before the first device is deployed: While planning is vital for successful software development, it's not a
scalability approach itself. Planning is a necessary prerequisite, not the feature that allows a system to scale.

Authoritative Links:

Microservices:https://martinfowler.com/articles/microservices.html - Provides an in-depth look at modular
design and its scalability benefits.

Stateless vs Stateful:https: //www.nginx.com/blog/stateful-vs-stateless-application-architectures/ -Explains
the differences between stateful and stateless systems, focusing on scalability.

Horizontal Scaling:https://aws.amazon.com/what-is/horizontal-scaling/ - Describes horizontal scaling and why it
is a key to scalability.

Question: 26

Referto the exhibit. The cURL POST request creates an OAuth access token for-authentication with FDM APl requests:
What is the purpose of the file *@token_data" that cURL is handling?

g}}lvgli Ze 1S a (f{)gélg%r(i tog It) th&grorrp:%)onsesplil) defl’e%g@]\?n/ J son’” \
1§‘ eis %ven %'S lﬂ‘iu 0S ore € alccess % en I‘E(?lve I‘OW

C&hl file is used to send a hentlca 10n -related headers
é en data

https://ast0072—pod.cisco.com:33333//api/fdm/latest/fdm/token

https://martinfowler.com/articles/microservices.html
https://www.nginx.com/blog/stateful-vs-stateless-application-architectures/
https://aws.amazon.com/what-is/horizontal-scaling/

D.This file contains raw data that is needed for token authentication.

Answer: D

Explanation:

This file contains raw data that is needed for token authentication.

Question: 27

Sequence Diagram: WebEx Teams workflow for sending a message to multiple rooms a user is a
member of.

Client | (WebEx Teams Database Storage Media |

{GET} memberships(BearerToken) SELECT *
FROM Rooms

Python Script: P WHERE BearerToken = StoredToken
on Script: Parse

—
JSON to specific room ID JSON <memberships> N —

—
N
| _|
Body: roomlD — XYZ UPDATE Rooms
Python Script: Repeat for Text — "Hello World" SET New Message = BearerToken, Text
all valid rooms ———) | | \NHERE roomID = roomID

—

Refer to the exhibit. Which action will complete the workflow that represents how an API call sends multiple -
messages?

A. PUT messages(roomID)

B. PUT messages(BearerToken)
C. POST messages(roomlID)

D. POST messages(BearerToken)

Answer: D

Explanation:

POST messages(BearerToken).

Question: 28

DRAG DROP -
Drag and drop the application requirement on the left onto the database type that should be selected for the

requirement on the right.
Select and Place:

Application requirements

rapid transaction handling

highly horizontally scalable

enforced data integrity tools

elastic, scalable, schema free

structured query language

highly normalized data

Answer:

Application requirements

rapid transaction handling

highly horizontally scalable

enforced data integrity tools

elastic, scalable, schema free

structured query language

highly normalized data

Explanation:

Relational:

Answer Area
Database type

Relational

Nonrelational

Answer Area
Database type

Relational

highly normalized data

structured query language

enforced data integrity tools

Nonrelational

elastic, scalable, schema free

highly horizontally scalable

rapid transaction handling

- Highly normalized data.

- Structured query language.

- Enforced data integrity tools.

Nonrelational:

- elastic, Scalable, Schema free.

- highly horizontally Scalable.

- rapid transaction handling.

Question: 29

$filter { string } query

Filter criteria for documents to return. A URI with a $filter System Query Option identifies a subset of
the Entries from the Collection of Entries identified by the Resource Path section of the URI. The
subset is determined by selecting only the Entries that satisfy the predicate expression specified by
the query option. The expression language that is used in $filter operators supports references to
properties and literals. The literal values can be strings enclosed in single quotes, numbers and
boolean values (true or false) or any of the additional literal representations shown in the Abstract
Type System section. Query examples: $filter=Name eq 'Bob' $filter=Tags/any(t: /Key eq 'Site’)
$filter=Tags/any(t: YKey eq ‘Site’ and tValue eq "London’)

lefer tE ']t'he exgl])'{‘ﬁl {n?er51 Rﬁ/Rﬁle%(gl{l?e dto Z])usegyl&'atkq}_t resgur/ &at }sz};'/e g’ a}éﬁyywo% s;:t to

VWIIAUIS UIC EXPpECict OUtput OI'UILS COMIIIIAana:

Alist of all resources that have a tag with the keyword "Site" B.error
message because the Value field was not specified

C.error message because the tag filter should be lowercase D.list of all
sites that contain RackUnit tagged compute resources

Answer: A
Explanation:

list of all resources that have a tag with the keyword "Site".

Question: 30 What is
the function of dependency management?

A.separating code into modules that execute independently

B.utilizing a single programming language /framework for each code project
C.automating the identification and resolution of code dependencies D.managing
and enforcing unique software version names or numbers

Answer: C

Explanation:

Dependency management, in the context of software development, focuses on handling the external libraries, packages,
or other modules that a project relies upon. Option C, "automating the identification and resolution of code
dependencies," accurately describes this core function. Software projects rarely exist in isolation; they often need to
leverage functionality provided by external resources. Dependency management tools track these dependencies,
ensuring that the correct versions are available and compatible with the project.

These tools also automatically download, install, and update the required dependencies, simplifying the development
process. This automation prevents manual, error-prone dependency handling, reducing the risk of conflicts and build
failures.

Options A, B, and D, while related to software development, do not define the primary role of dependency management.
Option A, "separating code into modules that execute independently,” describes modular design or microservices, not
dependency management. Option B, "utilizing a single programming

language/framework for each code project,” is a guideline for development practices but is not directly related to
dependency management. Option D, "managing and enforcing unique software version names or numbers," is related to
version control, which is a separate concept although intertwined with dependency management. Dependency
management is vital for maintainability, scalability, and reproducibility of software projects, especially in complex
environments and agile development processes. The goal is to ensure that the right resources are available at the
correct versions without developers having to manually handle each dependency.

Authoritative Links:

Wikipedia on Dependency Management:https://en.wikipedia.org/wiki/Dependency_management
Atlassian's Explanation on Dependency Management:https://www.atlassian.com/continuous-
delivery/principles/dependency-management

Cloud Native Computing Foundation on Dependency Management:
https://landscape.cncf.io/category=dependency-management

Question: 31
Which two types of organization are subject to GDPR? (Choose two.)

A.only organizations that operate outside the EU

B.any organization that offers goods or services to customers in the EU
C.only organizations that have offices in countries that are part of the EU
D.any organization that operates within the EU

E.only organizations that physically reside in the EU

Answer: BD

Explanation:

The General Data Protection Regulation (GDPR) applies to organizations based on their processing of personal data, not
solely on their physical location. Specifically, GDPR impacts two key types of organizations. Option B is correct because
any organization offering goods or services to individuals within the European Union (EU) is subject to GDPR,
regardless of where the organization is based. This "targeting" of the EU market triggers GDPR compliance
requirements. Option D is also correct because any organization that operates within the EU, including those that
process personal data of EU citizens, also falls under GDPR's jurisdiction. This means if an organization has an
established physical presence or conducts its core business activities in the EU, it is bound by GDPR. Therefore, options
A, C,and E are incorrect as they place geographical limitations or

https://en.wikipedia.org/wiki/Dependency_management
https://en.wikipedia.org/wiki/Dependency_management
https://www.atlassian.com/continuous-delivery/principles/dependency-management
https://www.atlassian.com/continuous-delivery/principles/dependency-management
https://www.atlassian.com/continuous-delivery/principles/dependency-management
https://www.atlassian.com/continuous-delivery/principles/dependency-management
https://landscape.cncf.io/category=dependency-management

ownership factors as the sole determinant of GDPR compliance, while GDPR focuses on where the personal data is
handled and who it concerns. The fundamental aspect of GDPR is the protection of personal data of EU citizens,
regardless of where the processing occurs. This territorial scope ensures that EU citizens' data rights are respected
across global interactions.

Authoritative Links for Further Research:

Official GDPR Text:https://eur-lex.europa.eu/eli/reg/2016/679/0j

Information Commissioner's Office (ICO) - UK:https://ico.org.uk/for-organisations/guide-to-the-general-data-
protection-regulation-gdpr/

European Data Protection Board (EDPB):https://edpb.europa.eu/our-work-tools/general-guidance /gdpr-
territorial-scope_en

Question: 32

What is a benefit of continuous testing?

A.increases the number of bugs found in production
B.enables parallel testing
C.removes the requirement for test environments

D.decreases the frequency of code check-ins

Answer: B

Explanation:

The correct answer is B. enables parallel testing. Continuous testing is a core practice within DevOps and continuous
integration/continuous delivery (CI/CD) pipelines. Its primary goal is to provide rapid feedback on code changes by
automating tests at every stage of the development lifecycle. Parallel testing, a direct benefit of continuous testing,
allows multiple tests to run concurrently, drastically reducing the overall testing time. This accelerated feedback loop is
essential for maintaining agility and speed in modern application development. By running tests in parallel, teams can
quickly identify and fix issues, preventing them from escalating into more significant problems later in the process. This
is in stark contrast to traditional approaches where testing is often a serial bottleneck, slowing down releases. Options
A, C,and D are incorrect. Continuous testing aims to decrease, not increase, bugs found in production. It still requires
test environments, and it encourages, not discourages, frequent code check-ins as part of the CI/CD workflow. In
essence, parallel testing is a cornerstone of continuous testing's efficiency, allowing for faster, more reliable, and higher-
quality software delivery.

Authoritative Links:

Continuous Testing:https://www.guru99.com/continuous-testing.html
Parallel Testing:https://testsigma.com/blog/parallel-testing/
DevOps Principles:https://aws.amazon.com/devops/what-is-devops/

Question: 33

What is a characteristic of a monolithic architecture?

A.ltis an application with multiple independent parts.
B.New capabilities are deployed by restarting a component of the application.

C.A service failure can bring down the whole application.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/
https://edpb.europa.eu/our-work-tools/general-guidance/gdpr-territorial-scope_en
https://edpb.europa.eu/our-work-tools/general-guidance/gdpr-territorial-scope_en
https://edpb.europa.eu/our-work-tools/general-guidance/gdpr-territorial-scope_en
https://edpb.europa.eu/our-work-tools/general-guidance/gdpr-territorial-scope_en
https://www.guru99.com/continuous-testing.html
https://www.guru99.com/continuous-testing.html
https://testsigma.com/blog/parallel-testing/
https://aws.amazon.com/devops/what-is-devops/

D.The components are platform-agnostic.

Answer: C

Explanation:

The correct answer is C. A service failure can bring down the whole application. This is a defining

characteristic of a monolithic architecture. Monolithic applications are structured as a single, indivisible unit. All
functionalities and components are tightly coupled and deployed together. Because of this tight coupling, if one part of
the application fails, it can cascade and cause the entire application to fail.

Options A, B, and D describe aspects opposite of a monolithic architecture. Option A refers to a distributed or
microservices architecture where components are independent. Option B describes component-level restarts, which is
not often part of a monolithic setup; entire application redeployments are the norm after code changes. Option D,
platform-agnostic components, is also not generally a characteristic of monolithic apps as they are typically built for a
specific environment. The interdependence of components in a monolithic architecture contributes to difficulties in
scaling, agility, and fault isolation, often leading to a single point of failure.

In contrast, modern architectural styles like microservices strive to be loosely coupled, allowing for more resilient
applications. With microservices, if one service goes down, it shouldn’t bring the entire application offline, as other
parts can still function independently. This is a key difference when comparing monolithic vs microservices. A single
deployment unit makes scaling complex, as you need to scale the entire application, even if only a small part is under
heavy load. These drawbacks have led to the move toward distributed systems and microservices.

For further research, you can explore the following resources:

Microsoft Azure Documentation on Microservices Architecture:https://learn.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices

Amazon Web Services Documentation on Monolithic vs Microservices:
https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices/

Cloudflare Blog on Monoliths:https://www.cloudflare.com/learning/serverless/glossary/monolithic-
architecture/

Question: 34

What are two principles according to the build, release, run principle of the twelve-factor app methodology? (Choose
two.)

A.Code changes are able to be made at runtime.
B.Separation between the build, release, and run phases.
C.Releases should have a unique identifier.

D.Existing releases are able to be mutated after creation.

E.Release stage is responsible for compilation of assets and binaries.

Answer: BC

Explanation:

The twelve-factor app methodology, designed for building scalable and maintainable software-as-a-service
applications, emphasizes a clear separation of the build, release, and run stages. This principle ensures that each stage
has a specific responsibility and is treated as a distinct entity. Option B, stating "Separation between the build, release,
and run phases," directly reflects this core tenet. The build stage transforms the

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://aws.amazon.com/compare/the-difference-between-monolithic-and-microservices/
https://www.cloudflare.com/learning/serverless/glossary/monolithic-architecture/
https://www.cloudflare.com/learning/serverless/glossary/monolithic-architecture/
https://www.cloudflare.com/learning/serverless/glossary/monolithic-architecture/
https://www.cloudflare.com/learning/serverless/glossary/monolithic-architecture/

code repository into an executable bundle, the release stage combines the build output with configuration to create a
specific release, and the run stage executes this release in the target environment. Option C, "Releases should have a
unique identifier," is also correct because it ensures traceability and reproducibility. Each release represents a specific
snapshot of the application with a distinct set of configuration and built code, allowing for easy rollback and
auditability. Unique identifiers make each release immutable, making debugging and version management
straightforward.

Options A, D and E are incorrect. Option A, which suggests “Code changes are able to be made at runtime”contradicts the
core philosophy of immutable releases and well-defined pipelines. Option D, "Existing releases are able to be mutated
after creation," violates the principle of immutability, making debugging very difficult. Finally, Option E, “Release stage
is responsible for compilation of assets and binaries”, is incorrect since the compilation of assets and binaries happens
in the build stage, not the release stage. The release phase’s main purpose is to tie the built code to the specific
environment configurations.

For further understanding, refer to resources such as:

The official 12-factor app documentation: https://12factor.net/
Relevant cloud computing resources on DevOps and application deployment methodologies.

Question: 35

Whatis a well-defined concept for GDPR compliance?

A.Data controllers must confirm to data subjects as to whether, where, and why personal data is being
processed.
B.Personal data that was collected before the compliance standards were set do not need to be protected.

C.Compliance standards apply to organizations that have a physical presence in Europe.

D.Records that are relevant to an existing contract agreement can be retained as long as the contract is in effect.

Answer: A

Explanation:

Justification for Answer A:

Answer A, "Data controllers must confirm to data subjects as to whether, where, and why personal data is being
processed,” is the most accurate reflection of a core principle of the General Data Protection Regulation (GDPR). GDPR
fundamentally emphasizes transparency and control for individuals (data subjects) over their personal data. This
principle is enshrined in articles 12-14 of the regulation which detail the information that data controllers must provide.
These articles require controllers to inform subjects about the nature of data being processed, the purpose, the legal
basis for processing, and retention periods. This proactive disclosure ensures individuals are aware of how their data is
being used and can exercise their rights.

The other options are inaccurate:

Option B is incorrect because GDPR applies to personal data regardless of when it was collected. There is no
grandfather clause exempting data collected before the regulation's effective date.

Option C is a misleading oversimplification. GDPR applies to any organization processing the personal data of
individuals within the EU, regardless of the organization's physical location. This includes entities outside of Europe
offering goods or services to EU citizens. This is the principle of extraterritoriality.

Option D is also incorrect because GDPR stipulates that data should only be kept as long as necessary for the purpose
for which it was collected. While data might be needed for contract fulfillment, there are retention limitations that go
beyond the mere validity of the contract and should be deleted according to set periods.

https://12factor.net/

Authoritative Links for further research:

Official GDPR Text:https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679 Information
Commissioner's Office (UK) - Guide to GDPR:https://ico.org.uk/for-organisations/guide-to-data-protection/guide-
to-the-general-data-protection-regulation-gdpr/

European Data Protection Board (EDPB):https://edpb.europa.eu/

In summary, GDPR's focus on transparency and individual control makes Option A the correct answer,
emphasizing the importance of informing data subjects about data processing activities.

Question: 36

Given an application that implements a basic search function as well as a video upload function, which two load-balancing
approaches optimize the application's user experience? (Choose two.)

A.Video upload requests should be routed to the endpoint using an intermediate hop.
B.Search requests should be routed to the endpoint with lowest round-trip latency.
C.Video upload requests should be routed to the endpoint with lowest round-trip latency.
D.Video upload requests should be routed to the endpoint with highest data throughput.
E.Search requests should be routed to the endpoint with highest data throughput.

Answer: BD

Explanation:

Here's a detailed justification for why options B and D are the optimal load balancing approaches, and why A, C, and E
are not ideal, given the scenario of a search and video upload application:

Why B is correct: Routing search requests to the endpoint with the lowest round-trip latency directly enhances user
experience. Search operations are typically latency-sensitive; users expect near-instantaneous results. Minimizing
latency means faster response times, leading to a more responsive and satisfying search experience. This aligns with the
principle of optimizing for interactive tasks. Sources such as cloud load balancing documentation from AWS
https://aws.amazon.com/elasticloadbalancing/ or Azure

https://azure.microsoft.com/en-us/products/load-balancer emphasize routing based on latency for latency-critical
applications.

Why D is correct: Video uploads are data-intensive, requiring high bandwidth to complete quickly. Routing upload
requests to endpoints with the highest data throughput ensures that uploads can complete rapidly, minimizing wait
times. This improves user experience, as users can avoid extended periods of waiting for their uploads to finish.
Throughput optimization is a crucial aspect of network and application performance, especially for operations with
large data volume. Resources on network performance optimization like Google Cloud's guide to optimizing network
performance https://cloud.google.com/network-

connectivity/docs/network-performance demonstrate the importance of matching tasks to throughput capabilities.

Why A is incorrect: Introducing an intermediate hop for video uploads adds complexity and latency, worsening
user experience. Additional hops introduce potential points of failure and delays, which are undesirable for large
file uploads. It's often best to directly route uploads to the appropriate endpoint to minimize the path.

Why C is incorrect: While minimizing latency is generally good, it's not the primary focus for video uploads. Uploads
are more dependent on bandwidth and throughput; latency optimization alone may not be effective, especially if the
endpoint is bandwidth-constrained. Optimizing for throughput is more critical.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
https://edpb.europa.eu/
https://aws.amazon.com/elasticloadbalancing/
https://azure.microsoft.com/en-us/products/load-balancer
https://cloud.google.com/network-connectivity/docs/network-performance
https://cloud.google.com/network-connectivity/docs/network-performance
https://cloud.google.com/network-connectivity/docs/network-performance
https://cloud.google.com/network-connectivity/docs/network-performance
https://cloud.google.com/network-connectivity/docs/network-performance

Why E is incorrect: Routing search requests to the highest throughput endpoint is less optimal than routing
them based on latency. Search performance is dictated primarily by how quickly responses can be received,
not necessarily by the total throughput that an endpoint is capable of handling. User perception for search is
more tied to latency than the potential throughput of the backend.

Question: 37

A developer is working on a bug fix. The existing branch named 'bugfix05328' needs to be merged with the current working
primary branch named

'prim404880077'. All changes must be integrated into a single commit instead of preserving them as individual commits.
Which git command must be used?

A.git checkout " "squash bugfix05328
B.git merge " "squash bugfix05328

C.gitrebase
D.git push " "rebase bugfix05328

merge bugfix05328

Answer: B

Explanation:
The correct Git command is git merge --squash bugfix05328. Here's why:

The scenario requires merging the changes from the bugfix05328 branch into the prim404880077 branch, but

instead of creating a merge commit that preserves the history of the bugfix05328 branch as separate commits,
it should integrate the changes as a single commit. This is accomplished using the --squash option with the git
merge command.

git merge combines changes from one branch into another. By adding the --squash flag, the changes from the
specified branch (in this case, bugfix05328) are incorporated into the working directory of the current branch (
prim404880077), but they are not committed yet. This means that the user has to stage and commit these
changes manually, which creates the desired single commit. The merge will not create a merge commit, and

the history will be linear. git checkout is not a merge command. git rebase could accomplish this, but it is more
complex for this task, and not the best practice to rebase shared branch. git push is a command to push to
remote and does not merge.

Therefore, git merge --squash bugfix05328 is the optimal and recommended method for this scenario.

Authoritative Links:

git merge:https://git-scm.com/docs/git-merge
git merge --squash:https://git-scm.com/docs/git-merge#Documentation/git-merge.txt---squash
git rebase:https://git-scm.com/docs/git-rebase

Question: 38
(1]

needs to be removed so that the commit is performed and branches merged. Which git command must be used to unstage
the file?

[1

]

[1

]

[1

]

[1

]

https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-merge#Documentation/git-merge.txt---squash
https://git-scm.com/docs/git-rebase

Answer: C

Explanation:

Correction in question:

A developer is working in a branch to develop a new feature named 'newfeat404880077". A file named
'devcoreg13642911.jpg' has accidentally been staged. This needs to be removed so that the commit is
performed and branches merged. Which git command must be used to unstage the file?

A. git delete HEAD devcoreg13642911.jpg
B. git remove HEAD devcoreg13642911.jpg
C. gitreset HEAD devcoreg13642911.jpg

D. git revert HEAD devcoreg13642911.jpg

Correct answer C:git reset HEAD devcoreg13642911.jpg.

Question: 39

A developer has completed the implementation of a REST API, but when it is executed, it returns a 401 error message.
What must be done on the API to resolve the issue?

A.Access permission to the resource must be granted, before the request.
B.Configure new valid credentials.

C.The requested API endpoint does not exist, and the request URL must be changed.
D.Additional permission must be granted before the request can submitted.

Answer: B

Explanation:

The correct answer is B. Configure new valid credentials. A 401 Unauthorized error in the context of a REST API
unequivocally indicates an authentication failure. This means the client's provided credentials, or lack thereof, were
deemed invalid or insufficient by the server to authorize access to the requested resource. Options A and D, while
touching on permissions, don't address the core issue of authentication, which comes before authorization. Option C,
regarding endpoint existence, would more likely result in a 404 Not Found error, not a 401. The error explicitly states
"Unauthorized," pointing directly to a credential issue, meaning that the server was able to locate the endpoint, but has
refused access due to missing or incorrect credentials, such as an invalid token, username/password combination, or
API key. Therefore, the immediate action required is to verify and, if necessary, obtain and configure valid credentials,
such as a valid API key, bearer token, or user authentication information. This will allow the server to authenticate the
request and grant access, if authorization policies also allow it. It doesn't mean permissions are not relevant, but
without successful authentication, authorization will never happen. To elaborate, REST API authentication commonly
uses mechanisms like API keys, OAuth 2.0, Basic Authentication, or other token-based methods. Ensuring the client is
providing valid and correct credentials for the authentication method the API employs is crucial for eliminating 401
errors.

Authoritative Links for further research:

Mozilla Developer Network (MDN) - HTTP Status Codes:https://developer.mozilla.org/en-
US/docs/Web/HTTP /Status (Specifically, check the 401 Unauthorized entry)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

OAuth 2.0 Documentation:https://oauth.net/2/ (For understanding OAuth 2.0 as a common authentication
method)

REST API Security Best Practices: You can find many articles on this topic, but searching for terms like "REST API
Authentication best practices" will yield useful results. For instance https://owasp.org/www-project-api-security/
has a good section on authentication.

Question: 40

Paginating the Results

By adding the page-size operator to the query URI, you can divide the query
results into groups (pages) of objects using the following syntax. The operand
specifies the number of objects in each group.

page-size = number-of-objects-per-page

By adding the page operator in the query URI, you can specify a single group
to be returned using the following syntax. The pages start from number 0.

page = page-number

examined.
Which API call retrieves faults 31 through 45?

A.GET https://apic-ip-address/api/class/faultinfo.json\?order-by=faultinst.severity|desc&page=1&page-size=15
B.GET https://apic-ip-address/api/class/faultinfo.json\?order-by=faultInst.severity|desc&page=2&page-size=15
C.GET https://apic-ip-address/api/class/faultinfo.json\?order-by=faultinst.severity|desc&page-size=30

D.GET https://apic-ip-address/api/class/faultinfo.json\?order-by=faultinst.severity|desc&page=2&page-size=30

Answer: B

Explanation:

GET https://apic-ip-address/api/class/faultinfo.json\?order-by=faultinst.severity|desc&page=2&page-size=15.

Question: 41

curl --insecure -H “Accept: application/json” \
-H “Content-Type: application/json” \

-d @token data \
elitig fhasexyiin Teg FOpBA,

Fawes JROMUITII B4 1Y E PA LETL) Al e Ren

on dat

A.This file is a container to log possible error responses in the request.

B.This file is given as input to store the access token received from FDM.

https://oauth.net/2/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/

C.This file is used to send authentication-related headers.

D.This file contains raw data that is needed for token authentication.

Answer: D

Explanation:

This file contains raw data that is needed for token authentication.

Question: 42

DRAG DROP -

Drag and drop the expressions from below onto the code to implement error handling. Not all options are used.
Select and Place:

Answer Area

base url = “https://api.meraki.com/api/v0"”
posturl = ‘%s/networks/%s/staticRoutes’ % ((str(base url), str(networkid)))
headers = {
‘x-cisco-meraki-api-key’: api key,
‘Content-Type’ : ‘application/json’
}
routes = [{
“subnet”: “10.16.4.0/22~,
“gatewayIp”: “10.1.0.207,
“name?”: “ROUTE1l”,
“enabled”: true

“subnet”: “10.253.254.0/24",
“gatewayIp”: “10.1.0.207,
“name” : “ROUTE2/,

“enabled”: true

“subnet”: ©10.168.0.0/21~,
“gatewayIp”: “10.1.0.207,
“name”: “ROUTE3”,
“enabled”: true

.

for route in routes:
print (“Adding static: “ + str(route[‘subnet’])
response = requests.post (posturl, json=route, headers=headers)

print (“Done!l)

print (“Failed to add static: “ + str(route[‘subnet’]) + “\n” + response.text)

|if response == 601:| | else: | | when |

| if status==201: | | elif: |

Answer:

Answer Area

base url = “https://api.meraki.com/api/v0”
posturl = ‘%s/networks/%s/staticRoutes’ % ((str(base url), str(networkid)))
headers = {
‘x-cisco-meraki-api-key’: api key,
‘Content-Type’ : ‘application/json’
}
routes = [{
“subnet”: “10.16.4.0/227,
“gatewayIp”: “10.1.0.207,
“name” : “ROUTEl”,
“enabled”: true

“Wsubnet”: “10.253.254.0/24",
“gatewayIp”: “10.1.0.207,
“name”: “ROUTE2’,

“enabled”: true

“subnet”: “10.168.0.0/217,
“gatewayIp”: “10.1.0.207,
“name”: “ROUTE3”,
“enabled”: true

|

for route in routes:
print (“Adding static: “ + str(route[‘subnet’])
response = requests.post(posturl, json=route, headers=headers)

| if status==201. |

print (“"Done! ")

| else: |

print (“Failed to add static: “ + str(route[‘'subnet’]) + “\n” + response.text)

| if response == 601 | when: |

| elif: |

Question: 43

User report that they can no longer able to process transactions with the online ordering application, and the logging
dashboard is displaying these messages.

FriJan 10 19:37:31.123 EST 2020 [FRONTEND] INFO: Incoming request to add item to cart from user 45834534858 Fri Jan
10 19:37:31.247 EST 2020 [BACKEND] INFO: Attempting to add item to cart

FriJan 10 19:37:31.250 EST 2020 [BACKEND] ERROR: Failed to add item: MYSQLDB ERROR: Connection refused What is
causing the problem seen in these log messages?

A.The database server container has crashed.
B.The backend process is overwhelmed with too many transactions.
C.The backend is not authorized to commit to the database.

D.The user is not authorized to add the item to their cart.

Answer: C

Explanation:
The correct answer is C. The backend is not authorized to commit to the database.
Here's the justification:

The log messages clearly indicate a failure in communication between the backend application and the

MySQL database. The specific error, "MYSQLDB ERROR: Connection refused,” points towards a network-level issue or
an authorization problem rather than a crashed container or overwhelming transactions. While a crashed container
could lead to connection issues, the log doesn’t explicitly mention container related errors or shutdown messages.
Furthermore, “Connection Refused” generally indicates that either no service is listening on the specified port or that a
firewall is blocking the traffic. In this case, the backend application attempts to connect to the database (as shown in the
"[BACKEND] INFO: Attempting to add item to cart” log) but is denied. This indicates the service is online, so a more
likely cause is that the application isn't authorized or allowed to connect by the database. This could result from several
scenarios, including:

Database User Permissions: The backend application might be using database credentials that lack the necessary
privileges to connect. Databases typically employ user accounts with specific authorization to access and modify
data.

Network ACLs/Firewall Rules: There might be network-level access control lists (ACLs) or firewall rules that restrict
the backend application from reaching the database server.

Incorrect Database Configuration: The backend application could be configured with incorrect connection
parameters like IP address, port, or username. However the log indicates the connection was initially successful,
indicating the configuration is likely correct and the permissions have been revoked or not yet created.

Option A, "The database server container has crashed," is not the most likely reason because the error specifically says
"Connection refused"” rather than, for example, "database server unavailable". Connection Refused indicates the service
is running but is refusing connections from the backend. Option B, "The backend process is overwhelmed with too many
transactions," would likely manifest as timeouts or slowdowns, not a "connection refused" error. Option D, "The user is
not authorized to add the item to their cart,” would typically be reflected in an error message from the frontend or
backend related to user roles/permissions and not a database connection refusal.

Therefore, the "MYSQLDB ERROR: Connection refused" indicates a more fundamental authorization or network
issue between the backend and the database, pointing towards the backend lacking authorization.

Authoritative Links for Further Research:

1. MySQL Connection Errors:https: //dev.mysql.com/doc/refman/8.0/en/connection-errors.html (This
official MySQL documentation provides detailed information about various connection errors,

including "Connection refused".)

2. Database Security Best Practices:https://owasp.org/www-project-top-ten/ (OWASP (Open Web
Application Security Project) provides guidelines on secure database configurations and access

control.)

3. Network Security Fundamentals: Explore resources on network ACLs and firewall rules to
understand how these can affect connectivity between services. (e.g., search for "firewall rules" or
"network access control lists").

Question: 44

https://dev.mysql.com/doc/refman/8.0/en/connection-errors.html
https://owasp.org/www-project-top-ten/

$fitter { string } query

Filter criteria for documents to return. A URI with a $filter System Query Option identifies a subset of
the Entries from the Collection of Entries identified by the Resource Path section of the URI. The
subset is determined by selecting only the Entries that satisfy the predicate expression specified by
the query option. The expression language that is used in $filter operators supports references to
properties and literals. The literal values can be strings enclosed in single quotes, numbers and
boolean values (true or false) or any of the additional literal representations shown in the Abstract
Type System section. Query examples: $fiter=Name eq 'Bob' $filter=Tags/any(t: /Key eq 'Site’)
$filter=Tags/any(t: /Key eq ‘Site’ and t/\Value eq ‘London’)

GET /api/vl/compute/RackUnits?§filter=Tags/any (t:t/Key eq ‘Site’)

Refer to the exhibit. An Intersight API is being used to query RackUnit resources that have a tag keyword set to "Site".
What is the expected output of this command?

Alist of all resources that have a tag with the keyword Site
B.error message because the Value field was not specified
C.error message because the tag filter should be lowercase

D.list of all sites that contain RackUnit tagged compute resources

Answer: A

Explanation:

list of all resources that have a tag with the keyword Site.

Question: 45

A user is receiving a 429 Too Many Requests error.
Which scheme is the server employing that causes this error?

A.rate limiting
B.time outs
C.caching

D.redirection

Answer: A

Explanation:

The correct answer is A. rate limiting. A 429 Too Many Requests error is a specific HTTP status code indicating that a
client has sent too many requests in a given timeframe. This error directly stems from a server implementing a rate-
limiting mechanism. Rate limiting is a common technique used to control the volume of requests a server processes
from a single client or source, preventing abuse, protecting resources, and ensuring fair access to services. When a client
exceeds the defined rate limit, the server responds with a 429 error, signaling that the client needs to reduce their
request frequency. Options B, C, and D are not direct causes of a 429 error. Timeouts (B) usually resultin a 504 Gateway
Timeout or similar errors, signifying that a request took too long to complete. Caching (C), although related to
performance and response times, does not intrinsically cause a 429 error; rather, effective caching can often reduce the
need for frequent requests.

Redirection (D) involves a different set of HTTP status codes (3xx) to guide the client to a new location. Rate limiting is

a core concept in API design and cloud-based services. For further information, you can explore resources like the
following:

1. MDN Web Docs on HTTP Status Codes: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status/429 This document provides in-depth details on the 429 Too Many
Requests status code and its implications.

2. API Rate Limiting Best Practices: Search for "API rate limiting best practices" on any major search engine
(Google, Bing, DuckDuckGo) to find articles and tutorials explaining its purpose and implementation.

3. Cloud provider documentation: Most major cloud providers like AWS, Azure, and Google Cloud have
specific documentation on how they implement rate limiting within their services. Search their specific
documentation to see examples of rate limiting in action.

Question: 46

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429

Meraki Dashboard API Response
Response Status Code : 200
Response Link Header
<https://n6.meraki.com/api/v0/organizations/681155/devices?perPage=3&startingAfter=
0000-0000-0000>; rel=first,
<https://n6.meraki.com/api/v0/organizations/681155/devices?perPage=3
&startingAfter=Q2EK-3UBE-RRUY>; rel=next,
<https://n6.meraki.com/api/v0/organizations/681155/devices?endingBefore=zzzz-zzzz~
zzzz&perPage=3>; rel=last
Response Body S
{

“name”: wW» .

“serial”: “Q2CV-V49B-RCMZ",

Ymac®”: “0c:8d:db:95:aa:39”,

“networkId”: “L 566327653141846927",

\\modalfl = \'\Mv? 1 " »

“address”: “430 E Cactus Ave.\nLas Vegas, NV 89183~

“lat”: 36.00017,

“ing®: =-115.15302,

\\notesl’: wrr P

“tags" ; W,

“lanIp: “192.168.0.257,

Z“eonfigurationUpdatedAt”: “2019-08-08T02:15:36Z7,

wfirmware”: “camera-3-30%

“name”: “Alex’s MR84 - 17,

“serial”: “Q2EK-2LYB-PCZP",

Ymac?”: “e0:55:3d:10:56:8a",

“networkId”: “L 566327653141846927",

\\modelll = \\med " 2

“address”: W,

“wlat”: 39.9482993357826,

“1lng”: -82.9895675461739,

\\notesl’ s Wwir #

\\tagslf: \\”’

“lanIp: null,

“econfigurationUpdatedAat”: “2018-02-03T11:02:372Z~,
“firmware”: “Not running configured wversion”

“name”: “Wegas Living Room MR84",

“serial”: “Q2EK-3UBE-RRUY”,

Ymac?”: “e0:55:3d:10:5a:ca”,

“networkId”: “L 566327653141846927",

Ymodel” : “MRS‘",

“address”: “430 E Cactus Ave.\nLas Vegas, NV 891837,
“lat”: 36.00015,

Mingts =115.15308,

\\notesll: Wrr ,

\\tagsn: we

“lanIp: “192.168.0.207",

“econfigurationUpdatedat”: “2018-09-29T12:23:21z",
“firmware”: “Not running configured version”

import request
import json

meraki api key = “<api key>”
url =
“https://api.meraki.com/api/v0/organizations/12345567890/devices”
headers = {
“X-Cisco-Meraki-API-Key”: meraki_ api key,

}
params = {

“perPage”: 3
}
res = requests.get (url, headers=headers, params=params)
formatted message = “"”
Meraki Dasboard API Response

Response Status Code : {}
Response Link Header : {}
Response Body s {1}

wrn, format (res.status code, res.headers.get(‘Link’),
json.dumps (res. json(), indent=4))
print(formatted_message)

<https://n6.meraki.com/api/v0/organizations/1234567890/devices?perPage=
3&startingAfter=0000-0000-0000>; rel=first,
<https://n6.meraki.com/api/v0/organizations/1234567890/devices?perPage=
3&startingAfter=Q2EK-3UBE-RRUY>; rel=next,
<https://n6.meraki.com/api/v0/organizations/1234567890/devices?
endingBefore=zzzz-zzzz-zzzz&perPage=3>, rel=last

Refer to the exhibit. Which line of code must be added to this code snippet to allow an application to pull the next set of
paginated items?

Arequests.get(url, links=["next']['url'])

B.requests.get(url, headers=links['next']['url'])
C.requests.get(res.links['next']['url'], headers=headers)
D.requests.get(res.headers.get('Link')['next']['url'], headers=headers)

Answer: C

Explanation:
Reference:

https://docs.python-requests.org/en/master/user/advanced/#link-headers

Question: 47

Responding to Events

After creating a bot, you can use its access token with the Webex REST APIs to perform actions as the bot,
such as sending a message with an interactive card to someone. To respond to events within Webex
Teams, such as someone sending your bot a message or adding it to a group space, you'll need to
configure webhooks. Webhooks will let you know when an activity has occurred so you can take action.
Check out the Webhooks Guide for more information about configuring webhooks.

With cards, you can give your users even more ways to interact with your bot or service, right in the Webex
Teams clients. See the Cards Guide for more information.

Differences Between Bots and People

One key difference between Webex Teams Bots and regular users is that, in group rooms, bots only have
access to messages in which they are mentioned. This means that messages:created webhooks only

fire when the bot is mentioned in a room.

Also, listing messages requires that you specify a special ?mentionedPeople=me query parameter

Bot Frameworks & Tools

There are several bot frameworks that can greatly simplify the bot development process by abstracting
away the low-level communications with the Webex REST API, such as creating and sending API requests
and configuring webhooks. Instead, you can focus on the building the interaction and business logic of your
bot.

Flint is an open source bot framework with support for regex pattern matching for messages and more.

Refer to the exhibit. Which set of API requests must be executed by a Webex Teams bot after receiving a webhook callback to
process messages in a room and reply with a new message back to the same room?
A

GET /message&roomld=<RO0OM_ID:

POST/messages
{ “roomid :"<ROOM_ID>" , “text” :<MESSAGE>"}

B.
GET Imessages&mentionedPeople=me&roomld=<RO0OM_ID>

PUT /Imessages
{ “roomld :"<ROOM_ID>" , “text” :<MESSAGE>"}

C

GET /message&roomld=<ROOM_ID>

PUT /Imessages
{ “roomld :"<ROOM_ID>" , “text” :<MESSAGE>"}

D

GET /messages&mentionedPeople=me&roomld=<RO0OM_ID:>

POST/messages
{ “roomld :"<ROOM_ID>" , “text” :<MESSAGE>"}

Answer: D

Explanation:

GET /Imessages&mentionedPeople=me&roomld=<RO0OM_ID>

POST/messages
{ “roomid :"<ROOM_ID>" , “text” :<MESSAGE>"}

Question: 49
DRAG DROP -

Description
The addNetworkObject operation handles configuration related to NetworkObject model.
This API call is not allowed on the standby unit in an HA pair.

HTTP request

URL

Data Parameters

Parameter Required Type Description
name True string A string that is the name of the network object.
description False string A string containing the description information.

Field level constraints: length must be between 0 and 200
(inclusive). (Note: Additional constraints might exist)

subType True string An enum value that specifies the network object type.
HOST - A host type.
NETWORK - A network type.
FQDN - A FQDN type.
RANGE - A range type.
Field level constraints: cannot be null. (Note: Additional
constraints might exist)

value True string A string that defines the address content for the object. For HOST
objects, this is a single IPv4 or IPv6 address without netmask or
prefix. For NETWORK objects, this is an IPv4 or IPv6 network
address with netmask (in CIDR notation) or prefix. For FQDN
objects, this is a Fully qualified domain name. For RANGE
objects, this is IPv4 or IPv6 addresses separated by -".
Field level constraints: cannot be null, must match pattern
A((21).)*$ (Note: Additional constraints might exist)

isSystemDefined False boolean A Boolean value. TRUE or FALSE(the default). The TRUE value
indicated that this Network object is a system defined object.

dnsResolution False string DNS Resolution type can be IPV4_ONLY, IPV6_ONLY or IPV4
_AND_IPV6.

type True string A UTF8 string, all letters lower-case, that represents the class-
type.

This corresponds to the class name.

curl -X ditem 1 -H “Authorization: Bearer exwsxads-sadads0as0d0-lw-1-1lw-1w” --header
‘Content-Type: application/json’ --header ‘Accept: application/json’ -d *{
“name”: %171.168.1.z",
“yalue”: “ 1m 2 u’
“sub'l‘ype": “ jtem 3 n’
\\type": w 1“ “, "
}' ‘https://ast0072-pod.cisco.com:33333/api/fdm/vd/object/ item 5

Refer to the exhibit. Drag and drop the code snippets from the left onto the item numbers on the right that match the
missing sections in the cURL exhibit to complete the cURL request to FirePower Device Manager API to create objects. Not
all code snippets are used.

Select and Place:

Answer Area

Answer:

Answer Area

<item 1=

<item 3=

<item 5=

5. networks

Question: 50
Which RFC5988 (Web Linking) relation type is used in the Link header to control pagination in APIs?

A.rel=index
B.rel=page
C.rel=next

D.rel=section

Answer: C

Explanation:

The correct answer is C. rel=next. RFC5988, commonly known as Web Linking, defines how to establish relationships
between resources using the HTTP Link header. Pagination, a crucial aspect of API design for handling large datasets,
benefits significantly from this mechanism. The rel=next link relation type signals the presence of a subsequent
resource in a sequence, typically used to navigate through paginated results. For example, a GET request might return a
JSON object containing data and also include a Link header like Link: <https://api.example.com/items?page=2>;
rel="next". This indicates that the next set of results can be obtained from the URL specified. The rel=index (option A)
typically signifies a link to the index or starting point of a collection. The rel=page (option B) is not a standard link
relation type defined in RFC5988 or commonly used for pagination. Lastly, rel=section (option D) typically relates to
parts of a document or information, not specifically to navigation between paginated datasets. The widespread usage of
rel=next for API pagination makes it the standard and preferred way to inform clients about how to retrieve the
subsequent page of results within a larger collection.

Authoritative Link:

RFC5988: https://datatracker.ietf.org/doc/html/rfc5988

Question: 51

A client is written that uses a REST API to interact with a server. Using HTTPS as the transport, an HTTP request is sent and
received an HTTP response. The response contains the HTTP response status code: 503 Service Unavailable.
Which action is the appropriate response?

A.Add an Authorization header that supplies appropriate credentials and sends the updated request.
B.Resend the request using HTTP as the transport instead of HTTPS.

C.Add an Accept header that indicates the content types that the client understands and send the updated request.

D.Look for a Retry-After header in the response and resend the request after the amount of time indicated.

Answer: D
Explanation:
The correct action for a 503 Service Unavailable response is D. Look for a Retry-After header in the response and

resend the request after the amount of time indicated. A 503 status code signifies that the server is temporarily
unable to handle the request due to overload, maintenance, or another transient issue. It's a

https://datatracker.ietf.org/doc/html/rfc5988

server-side problem, not necessarily related to the client's credentials, transport protocol, or content negotiation.
Adding an Authorization header (A) or changing the protocol to HTTP (B) won't solve the server's unavailability.
Including an Accept header (C) is relevant for content negotiation, but not the fundamental issue of a server being down.
The presence of a 'Retry-After' header, which is optional in a 503 response, specifically instructs the client when to try

again, avoiding further strain on the server. This demonstrates good API design principles promoting resilience. The

client should respect the 'Retry-After' header, if present, to avoid exacerbating the server's temporary unavailability.
Retrying prematurely may further overload the system. This behavior exemplifies a common practice in handling
transient failures in distributed systems, enhancing robustness and user experience. Therefore, checking for and
honoring a 'Retry-After' header is the most appropriate and efficient action for a client encountering a 503 error.

Authoritative Links:

MDN Web Docs on HTTP Status Codes:https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503 RFC 7231,
Section 6.6.4 on 503 Service Unavailable:https://datatracker.ietf.org/doc/html/rfc7231#section-6.6.4
Wikipedia Entry on HTTP 503:https://en.wikipedia.org/wiki/List_of HTTP_status_codes#5xx_server_errors

Question: 52

Application

Client1 | GET /vl1/api/articles/123

Client 2

API Service

HTTP/1.1 200
ETag: “17f0f££f99%ed5”

{“"title”: “Monday Headlines”}

HTTP/1.1 200
ETag: “17f0£££99ed5”
{“title”: “Monday Headlines”}

PUT /vl/api/articles/123

Client1 | 1£f -Match: “17f0f££99ed5”
{“title”: “Top Headlines”}
‘

HTTP/1.1 200
ETag: “109890d40980f"

t2 PUT /vl/api/articles/123

Clien AIEf -Match: “17f0fff99%ed5”
Refer to the exhi IQ‘I\:AL/% cgt‘gr.s ar aua%.’cln a

results from th Pt ,

A.The article is marked as Conflicted

n”ai"ticle'.

headline from their mobile devices. What

HTTP/1.1 412

#6

#6

B.10c articic neadline 15 Monday readlnes
C.The article headline is Today Headlines
D.The article headline is Top Headlines

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503
https://datatracker.ietf.org/doc/html/rfc7231#section-6.6.4
https://datatracker.ietf.org/doc/html/rfc7231#section-6.6.4
https://datatracker.ietf.org/doc/html/rfc7231#section-6.6.4
https://datatracker.ietf.org/doc/html/rfc7231#section-6.6.4
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#5xx_server_errors

Answer: D

Explanation:

The article headline is Top Headlines.

Question: 53

response = requests.get (url)

if response.status code != 200:
error message = “Unexpected HTTP Response code: {}”.format(response.status code)
raise Exception(error message)

data = response.json()

Refer to the exhibit. This snippet of a script has recently started exiting abnormally with an exception stating
‘Unexpected HTTP Response code: 429"

Which solution handles rate limiting by the remote API?

A.
response = requests.get (url)
if response.status code =— 429:

backoff_seconaé = int (response.headers[‘Retry-After’])
sleep (backoff seconds)
elif response.status code != 200:
error message = “Unexpected HTTP Response code: {}”.format(response.status code)
raise Exception(error message)
data = response.json()
B.

response = requests.get(url)
if response.status code != 200 and response.status code != 429:

error_message_= “Unexpected HTTP Response code: {}”.format (response.status code)
raise Exception(error message)
|data = response.json()

response = requests.get(url)

if response.status code != 200 and response.status code != 429:

backoff seconds = int(response.headers|[‘Retry-After’])

sleep (backoff seconds)

error message = “Unexpected HTTP Response code: {}”.format(response.status code)
raise Exception(error message)

‘data = response. json()

response = requests.get (url)

if response.status_code == 429:

backoff_seconds = int (response.headers| ‘Retry-After’])

sleep (backoff seconds)

response = requests.get (url)

elif response.status code != 200:

error message = “Unexpected HTTP Response code: {}”.format (response.status code)
raise Exception(error message)

data = response. json()

Answer: D

Explanation:

response = requests.get(url)
if response.status code == 429:
backoff seconds = int (response.headers| ‘Retry-After’])
sleep (bsckoff_seconds)
response = requests.get (url)
elif response.status_code != 200:
error message = “Unexpected HTTP Response code: {}”.format (response.status code)
raise Exception(error message)
data = response.json()

Question: 54

An application uses OAuth to get access to several API resources on behalf of an end user.
What are two valid parameters to send to the authorization server as part of the first step of an authorization code grant
flow? (Choose two.)

A.URI to which the authorization server will send the user-agent back when access is granted or denied

B.list of the API resources that the application is requesting to access

C.secret that was generated by the authorization server when the application registered as an OAuth
integration

D.list of scopes that correspond to the API resources to which the application is requesting to access

E.name of the application under which the application registered as an OAuth integration

Answer: AD

Explanation:

Okay, let's break down why options A and D are the correct parameters in the first step of an OAuth 2.0
authorization code grant flow, and why the others are incorrect.

The authorization code grant flow is a standard OAuth mechanism where an application requests authorization from
a user to access their resources. The first step involves redirecting the user's browser to the authorization server.
This request includes specific parameters, two of which are critical:

A. URI to which the authorization server will send the user-agent back when access is granted or denied
(redirect_uri): This is the callback URL where the authorization server will redirect the user’s browser after the user
has authenticated and potentially authorized the application. This is vital to return the user and the authorization
code back to the application. Without this, the process breaks down. This URI must be pre-registered with the
authorization server when the application is initially setup.

D. list of scopes that correspond to the API resources to which the application is requesting to access (scope):
The scope parameter defines the permissions the application is requesting from the user. Instead of blindly requesting
full access, an application uses specific scope values to ask for access to only the resources it needs (principle of least
privilege). For example, a calendar app might request a "calendar.read" scope, and a contact app might request
"contacts.read" and "contacts.write".

Here’s why the other options are incorrect:

B. list of the API resources that the application is requesting to access: While the idea of identifying resources is
related, OAuth uses scopes to control access to specific actions or groups of resources, rather than directly listing the
resources themselves.

C. secret that was generated by the authorization server when the application registered as an OAuth
integration (client_secret): The client secret is used later in the authorization code flow during the exchange of the
authorization code for an access token. It is used for authentication of the application with the authorization server,
not as part of the initial redirection.

In summary, for the initial authorization request in the OAuth 2.0 code grant flow, the redirect_uri and scope
parameters are essential in directing the user to the appropriate authorization server and setting proper
authorization boundaries respectively.

Authoritative Links for Further Research:

OAuth 2.0 RFC 6749: This is the core specification document for OAuth 2.0.

https://datatracker.ietf.org/doc/html/rfc6749

DigitalOcean - An Introduction to OAuth 2: A practical guide that provides a good overall explanation of OAuth
2.0. https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

AuthO - OAuth 2.0 Authorization Code Flow: Explains this specific flow in more detail.

https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow

Question: 55

DRAG DROP -
Booking Service
Form 1 Booking AP SQL Datastore
Resource |
ol UPDATE bookings._listeners(id,url)
4 * | SET booked_by = "alice’
- WHERE id = '"ABCDEF
item 3 S S
- - SELECT uri FROM bookings listeners|
item 4 WHERE ‘active’ = TRUE 2
‘ . loo |
\ item 5 | LR
item 6

efer to the exhibit above and click on the tab in the top left corner to view a diagram that describes the typical flow of
requests involved when a webhook is created for a booking service. Drag and drop the requests from the left onto the i
numbers on the right that match the missing sections in the sequence diagram to design the complete flow of requests
involved as a booking is updated from a web application.

Select and Place:

https://datatracker.ietf.org/doc/html/rfc6749
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow

Answer Area

Answer:

Answer Area

item 1

item 2

item 3

item 4

item5

item 6

Question: 56

DRAG DROP -

nee Instantiate a UCS Service Profile from template and associate """

from ucsmsdk.ucshandle import UcsHandle
from ucsmsdk.mometa.ls.LsBinding import LsBinding
from ucsmsdk.mometa.ls.LsServer import LsServer

HANDLE =|iteml |(
"ucs-devcore.cisco.com",
"admin",

"password"

)

HANDLE Jitem2]()

SP_FROM_TEMPLATE = (
parent _mo_or_dn='org-root/org-devnet',
name="devcore-server-01",
src_templ name="devcore_template”,
type="instance"

LsBinding (
parent_mo_or_dn4 item 4}
pn_dn="sys/chassis-7/blade-3"

)

HANDLE] item 5 (SP_FROM TEMPLATE, modify present=True)
HANDLE { item 6 k)

sanpLe [feem 7]0

Refer to the exhibit above and click on the resource tabs in the top left corner to view resources to help with this question.
Python code that uses the UCS Python

SDK is instantiating a service profile named "devcore-server-01" from service profile template “devcore_template’, then
associating the service profile instance to blade 3 in chassis 7. Drag and drop the code snippets from the left onto the item
numbers on the right that match the missing sections in the Python exhibit.

Select and Place:

Answer:

<item 1>

<item 2=

<item 3>

<item 4=

<item 5>

<item 6=

<item 7=

Question: 57
DRAG DROP -

def set_ssid settings(network_id, wireless name, wireless_ password):
"""configure an SSID to use the External Captive Portal."""

base _url = "https://api.meraki.com/api/vO0/"

response = requests.put
base url + "/" +|Item 2|+ "/|Ttem 3}/0",
headers=(
"X-Cisco-Meraki-API-Key": MERAKI_API_KEY,
"Content-Type": application/json"

}'

j=on={
"number®": O,
"name": wireless name,
"enabled": True,
"splashPage": " e
"ssidAdminAccessible": False,
"authMode™: " gt
"psk": wireless password,
"encryptionMode": "wpa",
"wpaEncryptionMode"™: "WPA2 only",
"ipAssignmentMode": "Bridge mode",
"useVlanTagging": False,
"walledGardenEnabled": True,
"walledGardenRanges": "",
"minBitrate": 11,
"bandSelection": “ ™
"perClientBandwidthLimitUp": O,
"perClientBandwidthLimitDown": 0

},
)

response.raise_for_status()

Refer to the exhibit above and click on the Meraki Resources tab in the top left corner to view Meraki

documentation to help with this question. Drag and drop the parts of the Python code from the left onto the item numbers
on the right that match the missing sections in the exhibit to enable an SSID. Not all code parts are used.

Select and Place:

Answer:

<item 1=

<item 2>

<item 3=

<item 4=

<item 5=

<item 6>

<item 7=

Question: 58

DRAG DROP -

Drag and drop the expressions from below onto the code to implement error handling. Not all options are used.
Select and Place:

Answer Area

base url = “https://api.meraki.com/api/v0”
posturl = ‘%s/networks/%s/staticRoutes’ % ((str(base url), str(networkid)))
headers = {
‘x~cisco-meraki-api-key’: api key,
‘Content-Type’: ‘application/json’
}
routes = [{
“subnet”: “10.16.4.0/22~,
“gatewayIp”: “10.1.0.207,
“name”: “ROUTEl”,
“enabled”: true
),
{
“subnet”: “10.253.254.0/247,
“gatewayIp”: “10.1.0.207,
“name” : “ROUTE2”,
“enabled”: true
},
{
“subnet”: “10.168.0.0/217,
“gatewaylIp”: “10.1.0.207,
“name”: “ROUTE3”,
“enabled”: true
} 2

for route in routes:
print (“Adding static: ™ + str(route['subnet’])
response = requests.post(posturl, json-route, headers-headers)
status = response.status_code

l |

print (“Done!”)

[|

print(*Failed to add static: ™ + str(route[‘'subnet’]) + “\n” + response.text)

|[if status == §01:| |else: | | when: |

[if status == 201:| |elif:]

Answer:

Answer Area

base url = “https://api.meraki.com/api/v0”
posturl = ‘%¥s/networks/%s/staticRoutes’ % ((str(base url), str(networkid)))
headers - |
‘x-cisco-meraki-api-key’: api_ key,
‘Content-Type’ : ‘application/json’
}
routes = [{
“subnet”: “10.16.4.0/227,
“gatewayIp”: “10.1.0.20”7,
“name”: “ROUTEl”,
“enabled”: true

“subnet”: “10.253.254.0/24",
“gatewayIp”: “10.1.0.207,
“name”: “ROUTE2"”,
“enabled”: true

,l

{
“subnet”: “10.168.0.0/21~,
“gatewayIp”: *“10.1.0.207,
“name”: “ROUTE3”,
“enabled”: true

)})

for route in routes:
print (“Adding static: “ + str(route[‘subnet’])
response = requests.post(posturl, json-route, headers-~headers)
status = response.status_code

[1: status == 201:]
print (“Done!”)

|else: |

print(“Failed to add static: “ + str(route[‘'subnet’]) + “\n” + response.text)

[if status == 601: [else: | [when: |

[if status == 201:]| [elif:]

Question: 59

curl “http://localhost/api/

Refer to the exhibit. An application's REST API GET call is tested to the inventory database.
Which missing code must be included to limit the number of values that are returned from the query to 20?

A.?inventory=20
B.inventory?limit=20
C.limit=720
D.inventory=limit?20

Answer: B

Explanation:

The correct answer is Binventory?limit=20path = inventoryquery = ? offset or limit = limitequal = =query
number = 20.

Question: 60

rr

headers = ()
try:
response = requests.get (“https://sandboxdnac.cisco.com/dna/intent/api/vl/wireless/profile”,
headers=headers, verify=False)
except requests/exceptions.RequestException as cerror:
print (“Error processing request”, cerror)
sys.exit(1)

Refer to the exhibit. Which code snippet is required in the headers to successfully authorize wireless information from
Cisco DNA Center?

A.headers = ""X-auth-token':'fa8426a0-8eaf-4d22-8e13-7c1b16a9370c’
B.headers = ""Authorization':'Basic YWRtaW46R3]JhcGV2aW5IMQ=="
C.headers = ""Authorization':'Bearer ASDNFALKJER23412RKDALSNKF"
D.headers = ""Content-type':'application/json

Answer: A

Explanation:

headers = ""X-auth-token':'fa8426a0-8eaf-4d22-8e13-7c1b16a9370c" .

Question: 61

Orchestrator
End Users Containers
Dependency 1
Web Form Hitp Requests Dependency 2 Dependency 3

| |
b -
I | ’

‘ Web ~=
Application

N | - -
{

Refer to the exhibit. The application follows.a containerized microservices.architecture that has.one container per

microservice. The microservices communicate with each other by using REST APIs. The double-headed arrows in the
diagram display chains of synchronous HTTP calls needed for a single user request.

Which action ensures the resilience of the application in the scope of a single user request?

A.Implement retries with exponential backoff during HTTP API calls.

B.Set up multiple instances of each microservice in active/active mode by using the Orchestrator.
C.Redesign the application to be separated into these three layers: Presentation, API, and Data. D.Create
two virtual machines that each host an instance of the application and set up a cluster.

Answer: A

Explanation:

Implement retries with exponential backoff during HTTP API calls.

Question: 62

DRAG DROP -
Drag and drop the steps on the left into the order on the right for an end-user to access an OAuth2 protected resource

using the 'Authorization Code Grant' flow.
Select and Place:

Answer Area

end-user initiates authentication OAuth client step 1
OAuth client requests access token from

g step 2
authorization server
OAuth client requests a resource on the

step 3

resource server
OAuth client receives access token from

g e step 4
authorization server
OAuth client receives an authorization code step 5
OAuth client communicates with step 6
authorization server to display login Ul
end-user authenticates with the authorization step 7
server
Answer:

Answer Area

OAuth client requests a resource on the
resource server

OAuth client receives access token from
authorization server

end-user initiates authentication OAuth client

OAuth client requests access token from
authorization server

OAuth client communicates with
authorization server to display login UI

end-user authenticates with the authorization
server

OAuth client receives an authorization code

Question: 63

In the three-legged OAuth2 authorization workflow, which entity grants access to a protected resource?

A.resource owner
B.client
C.resource server

D.authorization server

Answer: A

Explanation:

The correct answer is A, the resource owner. In the three-legged OAuth2 authorization flow, the resource owner is the
entity that ultimately grants permission for a client application to access their protected resources. This process
revolves around delegation of authorization rather than direct sharing of credentials. The resource owner, typically a
user, interacts with the authorization server to authenticate and then consents to grant specific access scopes to the
client application. This consent is formalized through the issuance of an authorization grant, often a temporary code or
token. The authorization server then provides the client with access tokens, but these tokens are solely the result of the
resource owner's explicit permission. The resource server, which hosts the protected resources, trusts the authorization
server's tokens, ensuring only clients with valid tokens granted by the resource owner can access those resources. The
client application acts upon the tokens obtained to access the resources. Essentially, the resource owner maintains
control and dictates which clients can access which resources, making them the grantor of access.

Here are some authoritative resources for further understanding of OAuth2:

1.RFC 6749 - The OAuth 2.0 Authorization Framework:https://datatracker.ietf.org/doc/html/rfc6749
(This is the foundational RFC document defining OAuth 2.0)

2. 0Auth 2.0: The Big Picture:https://www.digitalocean.com/community/tutorials/an-introduction-to-
oauth-2 (A good explanation for beginners)

3. Okta Developer Blog - What is OAuth 2.0?:https://developer.okta.com/blog/2017/06/21/what-is-
oauth-2-0 (An explanation from a developer's perspective)

Question: 64
What are two steps in the OAuth2 protocol flow? (Choose two.)

A.The user is authenticated by the authorization server and granted an access token.

B.The user's original credentials are validated by the resource server and authorization is granted.
C.The user indirectly requests authorization through the authorization server.

D.The user requests an access token by authentication and authorization grant presentation.

E.The user requests the protected resource from the resource server using the original credentials.

Answer: CE
Explanation:

Okay, let's break down why options C and E are correct steps in the OAuth 2.0 protocol flow, and why the others
are not.

OAuth 2.0 is a standard authorization protocol that allows a user to grant third-party applications limited access to
their resources without exposing their credentials. It involves multiple parties and a specific flow.

Option C accurately describes a key stage: "The user indirectly requests authorization through the authorization
server." In OAuth 2.0, the client application (the app requesting access) doesn't directly ask the user for their
credentials. Instead, it redirects the user to the authorization server (e.g., Google, Facebook),

https://datatracker.ietf.org/doc/html/rfc6749
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://developer.okta.com/blog/2017/06/21/what-is-oauth-2-0
https://developer.okta.com/blog/2017/06/21/what-is-oauth-2-0
https://developer.okta.com/blog/2017/06/21/what-is-oauth-2-0
https://developer.okta.com/blog/2017/06/21/what-is-oauth-2-0

which handles the authentication process on behalf of the app. This indirect approach is central to OAuth 2.0's security
model, protecting user credentials from the third-party app.

Option E, "The user requests the protected resource from the resource server using the original credentials," is
incorrect. The user never uses their original credentials to access the resource directly after the initial authentication.
Instead, once the authorization flow is complete, the client application uses an access token obtained earlier.

Option A, "The user is authenticated by the authorization server and granted an access token," is part of the process but
isn't a 'step' in the initial flow. The server does authenticate the user, and it ultimately grants an access token. However,
this happens after the user has been redirected and given consent. Option A lacks the redirection.

Option B, "The user's original credentials are validated by the resource server and authorization is granted," is
incorrect. Resource servers do not validate the user's credentials. They only validate access tokens. This is a critical
aspect of the OAuth architecture as it separates the responsibilities of authentication (authorization server) and
resource access (resource server).

Option D, "The user requests an access token by authentication and authorization grant presentation,” is an inaccurate
summation. The client application requests the access token after user authorization, presenting the authorization
grant received from the authorization server, not the user.

Therefore, the core steps of the initial OAuth 2.0 interaction, are C, the client redirects the user to the authorization
server, and E, after the access token is acquired, the client requests the protected resource from the resource server
using the token. Options A, B, and D inaccurately describe the flow or misplace the actor in the steps.

For further information, you can review the official OAuth 2.0 specification and documentation:

RFC 6749 - The OAuth 2.0 Authorization Framework:https://datatracker.ietf.org/doc/html/rfc6749
OAuth 2.0 Overview:https://oauth.net/2/

These resources will give you a deep understanding of the OAuth 2.0 protocol and its various flows and
components.

Question: 65

DRAG DROP -

Drag and drop the descriptions from the left onto the related OAuth-defined roles on the right.
Select and Place:

provides access to a secured resource authorization server

user access tokens to accept and

respond to secured resource requests Client

makes secured resource requests

resource owner
on behalf of the resource owner

issues access tokens to the client after

B resource server
authenticating the resource owner

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://oauth.net/2/

Answer:

issues access tokens to the client after
authenticating the resource owner

makes secured resource requests
on behalf of the resource owner

user access tokens to accept and
respond to secured resource requests

provides access to a secured resource

Question: 66

curl ——insecure —-H “Accept: application/json” \

-H “Content-Type:application/json” \

—-d @token data \
https://ast0072-pod.cisco.com:33333//api/fdm/latest/fdm/token

Refer to the exhibit. This cURL POST request creates an OAuth access token for authentication with FDM API requests.
What is the purpose of the file *@token_data" that cURL is handling?

A.This file is given as input to store the access token received from FDM. B.This
file is used to send authentication-related headers.

C.This file contains raw data that is needed for token authentication. D.This
file is a container to log possible error responses in the request.

Answer: C

Explanation:

This file contains raw data that is needed for token authentication.

Question: 67

What s the result of a successful OAuth2 authorization grant flow?

A.The third-party service is provided with a token that allows actions to be performed.

B.The user has the application rights that correspond to the user's role within the application's database. C.The
application is provided with a token that allows actions on services on the user's behalf.

D.The user has administrative rights to the application's backend services.

Answer: C

Explanation:

The correct answer is C. The application is provided with a token that allows actions on services on the
user's behallf.

OAuth?2 is an authorization protocol designed to grant limited access to resources without sharing user credentials
directly. The successful authorization grant flow, a core mechanism of OAuth2, concludes with the client application
receiving an access token. This token is not directly linked to the user's role within the application’s database (as
suggested in B). Instead, it empowers the application to interact with protected resources on the user's behalf, such as
accessing APIs. Option A is incorrect because the access token is provided to the requesting application, not the service
being accessed. It is a client application that needs the token to gain access and perform actions on the user's behalf, and
the service that is providing access to resources does not get an access token. Option D is not relevant to the OAuth2
flow because the protocol does not involve granting any administrative privileges to the application. The access token
embodies the permissions granted by the user during the authorization process, and it typically has a limited lifespan,
enhancing security. The user doesn’t gain any rights within the application using OAuth2, rather the application receives
the necessary permission to act on behalf of the user. This token enables API calls without exposing user credentials
directly, supporting a secure and delegated authorization model.

Here are some authoritative links for further reading:

RFC 6749 - The OAuth 2.0 Authorization Framework:https://datatracker.ietf.org/doc/html/rfc6749 (This is the
official specification)

DigitalOcean Tutorial on OAuth 2.0:https://www.digitalocean.com/community/tutorials/an-introduction-to-
oauth-2 (A good explanation of the concepts)

Okta's explanation on OAuth 2.0:https://www.okta.com/identity-101/oauth-2-0/ (Provides a clear and business-
focused explanation)

Question: 68

In the three-legged OAuth2 process, after the authorization server presents a form to the resource owner to grant access,
whatis the next step?

A.The resource owner authenticates and optionally authorizes with the authorization server.
B.The user who owns the resource initiates a request to the OAuth client.
C.If the resource owner allows access, the authorization server sends the OAuth client a redirection.

D.A form to allow or restrict access is submitted by the owner of the resource.

Answer: D

Explanation:
The correct answer is D. A form to allow or restrict access is submitted by the owner of the resource. Here's why:

The three-legged OAuth 2.0 flow involves a series of interactions between the client application, the resource owner
(user), and the authorization server. After the authorization server presents the consent form to the resource owner,
this form explicitly seeks the resource owner's permission. The next logical step is the resource owner actively
interacting with that form.

Option A is incorrect as the resource owner has already authenticated before being presented with the authorization
form. Option B is premature; the user action here is related to providing consent, not the initial request to the client.
Option C is the subsequent step, happening after the resource owner interacts with the form.

Therefore, after the form is presented, the resource owner reviews the requested permissions. They then

https://datatracker.ietf.org/doc/html/rfc6749
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.okta.com/identity-101/oauth-2-0/

explicitly submit the form, choosing to grant or deny the client application access to the protected resource. This action
is fundamental to the OAuth 2.0 principle of user-controlled access. Upon submission, the server proceeds with
generating the necessary tokens based on the granted access, which would be followed by the redirection in C, but not
before D.

The choice is consistent with OAuth 2.0's design focusing on delegating authorization, where resource owners are in
control of what data they share. This step is vital for security and privacy. The resource owner is not automatically
granting access; there is explicit consent required, enforced via this form submission.

For further research, refer to:

OAuth 2.0 Specification:https: //oauth.net/2/ - The official OAuth 2.0 specification provides a detailed
understanding of the protocol.

RFC 6749 (OAuth 2.0):https://datatracker.ietf.org/doc/html/rfc6749 - The formal document outlining OAuth 2.0.

DigitalOcean's Understanding OAuth 2.0:https://www.digitalocean.com /community/tutorials/an-
introduction-to-oauth-2 - Provides a comprehensive guide with illustrative examples.

Question: 69

Which OAuth mechanism enables clients to continue to have an active access token without further interaction from the
user?

A.refresh grant
BJWT
C.password grant
D.preshared key

Answer: A

Explanation:

The correct answer is A. refresh grant.

OAuth 2.0 provides several grant types for obtaining access tokens. Among them, the refresh grant is specifically
designed to address the scenario where a client needs to maintain access without repeatedly involving the user. When
an application initially obtains an access token, it often receives a refresh token alongside it. Access tokens have a
short lifespan for security purposes. When the access token expires, the client can use the refresh token to request a
new access token without requiring the user to re-authenticate.

This eliminates the need for the user to interactively log in or provide credentials each time access expires.

The process avoids interruption and ensures seamless application functionality. The refresh token acts as a long-lived
credential solely used for obtaining new access tokens, which allows the refresh token to be stored securely while also
allowing the application to have continued access. JWT (JSON Web Token) is a token format and not an OAuth grant
type. Password grants are generally discouraged due to security risks. Pre-shared keys are not a mechanism used in
OAuth authentication. Therefore, the refresh grant is the only mechanism among the options that allows for continuous
access token renewal without user interaction. This is crucial for maintaining application sessions and providing a
smooth user experience.

Authoritative Links:

RFC 6749 - The OAuth 2.0 Authorization Framework:https: //datatracker.ietf.org/doc/html/rfc6749#section-6
(Section 6 details the different OAuth grant types, including the refresh token grant).

AuthO: Refresh Tokens:https://auth0.com/docs/tokens/concepts/refresh-tokens (Explains refresh token
concepts and usage)

https://oauth.net/2/
https://datatracker.ietf.org/doc/html/rfc6749
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://datatracker.ietf.org/doc/html/rfc6749#section-6
https://datatracker.ietf.org/doc/html/rfc6749#section-6
https://datatracker.ietf.org/doc/html/rfc6749#section-6
https://datatracker.ietf.org/doc/html/rfc6749#section-6
https://datatracker.ietf.org/doc/html/rfc6749#section-6
https://auth0.com/docs/tokens/concepts/refresh-tokens

Okta: OAuth 2.0 and OpenID Connect Overview:https://developer.okta.com/docs/concepts/auth-overview/
(Provides a broad overview of OAuth 2.0, including the different grant types).

Question: 70

A developer is building an application to access a website. When running the application, an HTTP 403 error code has been
received.
How should the application be modified to handle this code?

A.Create a loop on cancel the operation and run a new one after the code is received.
B.Use exponential backoff when retrying distributed services and other remote endpoints.
C.Build a try/except around the urlopen to find errors occurring in the request.

D.Redirect the request to an internal web server and make a new request from the internal resource.

Answer: C

Explanation:

The correct answer is C. Build a try/except around the urlopen to find errors occurring in the request.

An HTTP 403 error indicates "Forbidden," meaning the server understands the request but refuses to authorize it. This
typically occurs when the client lacks the necessary permissions or authentication credentials to access the requested
resource. Option C addresses this directly by using a try/except block, a fundamental error-handling mechanism in
programming. When the urlopen function (or equivalent for making HTTP requests) encounters a 403 error, it raises an
exception. The except block catches this exception, allowing the application to gracefully handle the error without
crashing. This approach provides a structured way to identify and respond to the specific error, which could involve
logging the issue, displaying an informative message to the user, or attempting alternative access methods. Options A, B,
and D are not appropriate for handling this specific error. Creating a loop (A) might result in an infinite loop if the issue
is not resolved. Using exponential backoff (B) is better suited for transient errors like temporary server

unavailability or rate limiting, not a permissions error. Redirecting to an internal server (D) is overly complex and
doesn't address the core permission problem. Therefore, C is the most appropriate solution as it provides a targeted and
standard approach to handling the 403 error. This solution adheres to best practices in software development, where
proper error handling prevents application failures and improves robustness.

Authoritative Links:

Python try/except:https://docs.python.org/3/tutorial /errors.html
HTTP 403 Forbidden Status:https://developer.mozilla.org/en-US/docs/Web/HTTP/Status /403 HTTP
Error Handling:https://restfulapi.net/http-error-codes/

Question: 71

https://developer.okta.com/docs/concepts/auth-overview/
https://developer.okta.com/docs/concepts/auth-overview/
https://docs.python.org/3/tutorial/errors.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/403
https://restfulapi.net/http-error-codes/

API CONSOLE

/api/fmc_config/vl/domain/e276abec-e0f2-11e3-8169-
6d9ed49b625f/0object/fqdns

005056BB-0B24-0ed3-0000-858993545263
Identifier for FQDN object.

+ query parameter

Content-Type Header | application/json &
Accept Header | application/json &

Success!

Response Text| Response Info Request Info

"value™: “104E06. I'VE .26 ,
"overridable": false,
"description": "testServer",
"id": '005056811-0B24-0ed3-0000 858999045263 ",
"name": "testServerO0l.foobar.com",
"metadata": {

"timestamp": 1551986986196,

YlastUser™: {

"name" . I‘ljboga"
} s

"domain ™: {

Refer to the exhibit. Which API call does an engineer use to delete the FQDN object?

A.DELETE /api/fmc_config/v1l/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f

B.DELETE /api/fmc_config/v1l/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/object/fqdns/005056BB-0B24-
0ed3-0000-858993545263

C.DELETE /api/fmc_config/v1l/domain?id=e276abec-e0f2-11e3-8169-6d9ed49b625f

D.DELETE /api/fmc_config/v1l/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/object/fqdns?id=005056BB-0B24-
0ed3-0000-858993545263

Answer: B

Explanation:

DELETE /api/fmc_config/v1/domain/e276abec-e0f2-11e3-8169-6d9ed49b625f/object/fqdns/005056BB-0B24-
0ed3-0000-858993545263.

Question: 72

while attempts < max_attempts:
response = requests.get (request url,
headers = { "Authorization": "Bearer " + api token}}

If not rate-limited, exit loop and continue with rest of the code
if | |3
break

time.sleep((2 ** attempts) + random.random())
attempts += 1
Refer to the exhibit. Which code snippet completes this code to handle API rate-limit?

A.response.status_code == 429
B.response.status_code != 408
C.response.status =408

D.response.status_code != 429

Answer: D

Explanation:

Correct answer is D:response.status_code != 429.

Question: 73

“versionv:[1,

“secret”: “supersecret”,

“type”: “DevicesSeen”,

“data”: {

“apMac”: “00:18:0a:13:dd:b0”,

“apFloors”:
“apTags”: [
s devfl‘ -

L1,

A.version 4
B.v 10
C.2

D.version 2

Answer: C

Explanation:

It is C since there is no quotation mark in the field, so the field only can be filled using a number which is 2. The other
answers are string type.

Question: 74

Which two methods are API security best practices? (Choose two.)

A.Use tokens after the identity of a client has been established.
B.Use the same operating system throughout the infrastructure.
C.Use encryption and signatures to secure data.

D.Use basic auth credentials over all internal API interactions.

E.Use cloud hosting services to manage security configuration.

Answer: AC

Explanation:

Here's the justification for why options A and C are the correct API security best practices:

A. Use tokens after the identity of a client has been established: This practice aligns with modern

authentication and authorization workflows. After a user or application is authenticated (usually by providing valid
credentials), a token (like a JWT - JSON Web Token) is issued. This token acts as a temporary key, allowing the client to
access protected API endpoints without repeatedly providing credentials. This approach enhances security by limiting
the exposure of sensitive credentials and enabling fine-grained access control based on token claims. This aligns with
the principle of least privilege and improves overall API security posture. * Link 1: JWT Explanation * Link 2: OAuth 2.0

C. Use encryption and signatures to secure data: Encrypting data in transit (using protocols like TLS/HTTPS) and at
rest (using encryption algorithms) is critical to protect sensitive information from eavesdropping and unauthorized
access. Digital signatures, on the other hand, are used to ensure the integrity of data and verify the sender's identity.
These measures prevent man-in-the-middle attacks, data tampering, and impersonation. Implementing encryption and
signatures is a fundamental requirement for building secure APIs. This practice also enables secure communication
between services and clients, ensuring data confidentiality and integrity.

* Link 3: TLS/HTTPS Explained * Link 4: Digital Signatures Explained

Options B, D, and E are incorrect:

B. Use the same operating system throughout the infrastructure: While consistency can simplify management, it's
not a primary security concern. Having diverse operating systems can actually offer better resilience in case of exploits
targeting specific OS vulnerabilities.

D. Use basic auth credentials over all internal API interactions: Basic auth sends credentials in plaintext (base64
encoded) making it insecure, especially in internal API interactions. It should be avoided and replaced with token-based
authentication.

E. Use cloud hosting services to manage security configuration: While cloud providers offer security services,
relying solely on them without proper configuration and understanding could lead to vulnerabilities.

Security is a shared responsibility model requiring active participation from both the cloud provider and the
user/application developer.

https://jwt.io/introduction
https://oauth.net/2/
https://www.cloudflare.com/learning/ssl/what-is-tls/
https://www.globalsign.com/en/blog/what-is-a-digital-signature

Question: 75
DRAG DROP -

/dna/intent/api/vl/wireless/profile Get Wireless Profile

Gets either one or all the wireless network profiles if no name is provided for network-profile.
Parameters

Name Description
profileName Default value:
string

(query)

Responses

Code Description
200

The request was successful. The result is contained in the

response body.
Example Value Model

“WprofileDetails”: {
“name”: “string”,
“Wsites”: [
“string”
1,
wssidDetails”: [
{
“name”: “string”,
\\typell X \\Guestll y
“enabledFabric”: true,

“flexConnect”: {
“enableFlexConnect”: true,
“localToVlan”: 0
},

“InterfaceName”: “string”

import requests, json
def get dnac wireless profiles():
try:
url = “https://sandboxdnac?2.cisco.com/dna/intent/api/v1l” \
+ “/wireless/profile? iteml =ChicagoCampus|"”

payload = {}
headers = { ‘x-auth-token’: token }

response = requests.request (“GET"”, url, headers=headers, data = payload)
response.raise_for_status()
return response.json() [0][* ditem 2 '][* ditem 3 '] \
[((item 4][item S '] [“ item 6 "]
except Exception as e:
print (e)

def create_dnac_ token():

try:
url = “https://sandboxdnac?2.cisco.com/dna/system/api/vl/auth/token”
payload = {}
headers = { ‘Authorization’: ‘Basic ZGV2bmVOdXNlcjpDaXNjbzEyMyE= °

‘Content-Type’: ‘application/json’ }

response = requests.request (“POST”, url, headers=headers, data = paylocad)
response.raise_for_status()
return response.json() [“Token”]

except Exception as e:
print (e)

r

if name - W main -
token = create dnac token()
print (get _dnac wireless profiles())

Refer to the exhibit. The Python script is supposed to make an API call to Cisco DNA Center querying a wireless profile for
the “ChicagoCampus’ and then parsing out its enable FlexConnect value. Drag and drop the parts of the Python code from the

left onto the item numbers on the right that match the missing sections in the exhibit.
Select and Place:

Answer Area
0 <item 1>
ssidDetails <item 2>
profileDetails <item 3=
profileName <item 4>
flexConnect <item 5>
enableFlexConnect <item 6>

Answer:

Answer Area

Question: 76

DRAG DROP -
A developer is creating a Python script to catch errors using REST API calls and to aid in debugging. Drag and drop the code
from the bottom onto the box where the code is missing to implement control flow for REST API errors. Not all options are

used.
Select and Place:

Lavgre
res = requests.get (address,timeocut=30)
except requests. as e:

print (“"Make sure you are connected to Internet.”)
print (str (e))
continue

except requests. as e:

print {(*Timeout Error")
print (str (e)})
continue

except requests. as e:

print (“General Error”)
print (str (e))
continue

except

print (“Program closed”)

ConnectionError RequestException
Timeout KEeyboardInterrupt
Request Error

Answer:

CEVE
res = requests.get (address,timeout=30)
except requests.

ConnectionError as e:

print (“Make sure you are connected to Internet.”)
print (str (e))
continue

except requests. Timeout as eai

print (“Timeout Error”)
print (str (e))
continue

except requests. | psguestException as e:

print (“General Error”)
print (str (e))
continue

except

ReyboardInterrupt|-

print (“Program closed”)

Request Error

Question: 77

Which two encryption principles should be applied to secure APIs? (Choose two.)

A.Use temporary files as part of the encryption and decryption process.
B.Use encrypted connections to protect data in transit.

C.Reuse source code that contain existing UUIDs.

D.Embed keys in code to simplify the decryption process.

E.Transmit authorization information by using digitally signed payloads.

Answer: BE

Explanation:

The correct answer is B and E. Securing APIs requires a multi-faceted approach, and encryption is paramount. Option B,
"Use encrypted connections to protect data in transit," is crucial because it leverages protocols like TLS/SSL to establish
a secure, encrypted channel for data transmission between the API client and server. This prevents eavesdropping and
man-in-the-middle attacks where sensitive information could be intercepted during transfer. Cloud environments often
rely heavily on these protocols for securing APl communications.

Option E, "Transmit authorization information by using digitally signed payloads," ensures data integrity and
authenticity of the authorization claims. Digital signatures utilize cryptography to confirm the sender's identity and
verify that the payload hasn't been tampered with. This is essential for authorization processes as it prevents

unauthorized access by rogue parties. Methods like JWTs (JSON Web Tokens) often employ digital signatures to securely
convey authorization details.

Option A, "Use temporary files as part of the encryption and decryption process," introduces unnecessary complexity
and potential security risks, as these temporary files could become targets. Option C, "Reuse source code that contain
existing UUIDs," has no direct bearing on encryption and may introduce security vulnerabilities if the UUIDs are
predictable. Option D, "Embed keys in code to simplify the decryption process," is a severe security flaw; embedding
keys makes them readily accessible to anyone who can access the codebase and can lead to a major breach if the code is

compromised.

For more information on securing APIs, consider exploring the following resources:

OWASP (Open Web Application Security Project):https://owasp.org/www-project-top-ten/ - OWASP

provides guidance on API security best practices.

NIST (National Institute of Standards and Technology):https://www.nist.gov/cyberframework - Provides

cybersecurity frameworks that address data protection.

Cloud Security Alliance:https://cloudsecurityalliance.org/ - Offers resources for cloud security best

practices.

IETF (Internet Engineering Task Force):https://www.ietf.org/ - Specifies the technical standards for internet

protocols like TLS/SSL.

Question: 78
DRAG DROP -

Drag and drop the code from the bottom onto the box where the code is missing to provision a new Cisco Unified

Computing System server by using the UCS
XML API. Options may be used more than once. Not all options are used.
Select and Place:

import regquests
url = “https://209.165.200.231"

payload = ' ¥ 1
<

dn= “org-root/vcs—-service-templ-001"
cookie= “<real cookie>"
inTargetOrg= “org-root”

= “wcs001”

inHierarchical= “no”>

</ >

1 1 1
headers = {

‘Accept’: ‘application/xml’,
}

response = regquests.regquest (

; url, headers=headers,

data=payload)

print (response.text.encode (‘utf8’))

lsDeployTemplate inDeployServerName

1sInstantiateTemplate

“POSTR inServerName

" PUT "

Answer:

https://owasp.org/www-project-top-ten/
https://www.nist.gov/cyberframework
https://cloudsecurityalliance.org/
https://www.ietf.org/

import regquests

url = “https=//209.165.-200.231"

A 1 1

payload =

< |lsInstantiateTemplate

dn= “org-root/vcs-service-templ-001"
cookie= “<real cookie>”
inTargetOrg= “org-root”

inServerName = “wecs001”

inHierarchical= “no”>

</ |lsInstantiateTemplate|>

1 Al 1

headers = {
‘Accept’: ‘application/xml’,
}
response = requests.reguest (“POST” s url, headers=headers,

data=payload)

print (response.text.encode (‘utfg8’))

lsDeployTemplate inDeployServerName lsInstantiateTemplate

“POST" inServerName “pyT"

Question: 79

. import reguests, requests cache
2 from flask import Flask, render template, request, jsonify

)

=

app = Flask(_name)

requests cache.install cache(‘app cache’, backend= ‘redis’, expire after=%00)

8 Rapp.route(‘/’", methods=[‘GET, ‘POST')
2 def dewvnet ():
T if request.method == ‘POST':
11 location = request.form.get (‘location’)
12 url = “https://devnet.com/api/search{0}”.format {location}
13 response dict = requests.get (url).json()
14 return jsonify(response dict)
5 return render template (‘index.html’)

17 if name == ' main ’':
18 app.run ()

Refer to the exhibit. An application has been developed to serve the users in an enterprise. After HTTP cache controls are
implemented in the application, users report that they receive stale data when they refresh the page. Without removing
HTTP cache controls, which change ensures that the users get current data when refreshing the page?

A.Add an if-None-Match header that has a value of an Entity Tag.
B.Reduce the expire_after value to 60.
C.Add an Expires header that has a value of 0.

D.Add a Cache-Control header that has a value of no-cache, no-store, must-revalidate.

Answer: D
Explanation:

Add a Cache-Control header that has a value of no-cache, no-store, must-revalidate.

Question: 80

<interface xmlns= “urn:ietf:params:xml:ns:yang:ietf-interfaces”
xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces”>
<name>GigabitEthernet2</name>
<description>Sample Description</description>
<type xmlns:ianaift= “urn:ietf:params:xml:ns:yvang:iana-if-type”>
ianaift:ethernetCsmacd</type>
<enabled>true</enabled>
<ipv4 xmlns= “urn:ietf:params:xml:ns:yang:ietf-ip”>
<address>
£ip»10.255.255.1</1ip>
<netmask>255.255.255.0</netmask>
</address>
</ipv4d>
<ipvé xmlns= “urn:ietf:params:xml:ns:yang:ietf-ip”>
</ipv6>
</interface>

Refer to the exhibit. Which cURL requestis included 1n the presented XML as the body of the response? A.

carl X €T \
https://<HOST>:<PORT>/restconf/data/\
ietf-interfaces:interfaces/\
interface=GigabitEthernet2 \

j -H ‘Authorization: Basic <TOKEN>'

curl -X GET \
https://<HOST>:<PORT>/restconf/data/\
d ietf-interfaces:inteffacEoN

curl -X PUT \
https://<HOST>:<PORT>/restconf/data/\
ietf-interfaces:interfaces \

| —H ‘Authorization: Basic <TORKEN>'

curl -X PUT \
https://<HOST>:<PORT>/restconf/data/\
ietf-interfaces:interfaces/\
interface=GigabitEthernet?2

Answer: A
Explanation:

carl -3 €T %
https://<HOST>:<PORT>/restconf/data/\
ietf-interfaces:inberfaces/\
interface=GigabitEthernet2 \
—H ‘Authorization: Basic <TOKEN>'

