complete your prog;

about resources, doubts and more!

Cisco

(300-435)

Automating Cisco Enterprise Solutions (ENAUTO)

Total: 149 Questions
Link:

Question: 1
What are two characteristics of RPC API calls? (Choose two.)

A.They can be used only on network devices.
B.They use only UDP for communications.
C.Parameters can be passed to the calls.
D.They must use SSL/TLS.

E.They call a single function or service.

Answer: CE

Explanation:

The correct answer is C. Parameters can be passed to the calls and E. They call a single function or service. RPC
(Remote Procedure Call) APIs are designed to execute functions or procedures on a remote server as if they were local.
This mechanism inherently requires the ability to pass parameters or arguments to the remote function. This allows the
client to provide input to the function, influencing its behavior and the results it generates. Additionally, RPC calls are
typically designed to invoke a specific, well-defined procedure or service on the remote server. Each call is intended to
perform a specific task, rather than a broad, multi-purpose interaction. This promotes modularity and simplifies the
communication process. RPC is a procedural paradigm that emphasizes the specific nature of the call and its purpose.

Option A is incorrect because RPC can be used across many systems, not just network devices. Option B is wrong
because RPC can use various protocols for communications, like TCP, not solely UDP. Also, while RPCs can use SSL/TLS,
using them is not a must and is optional hence option D is incorrect.

Remote Procedure Call (RPC):https://en.wikipedia.org/wiki/Remote_procedure_call
Introduction to REST APIs:https://www.redhat.com/en/topics/api/what-are-rest-apis (While not directly RPC, it
contrasts with it, highlighting RPC's single-function focus).

Question: 2

Which two actions do Python virtual environments allow users to perform? (Choose two.)

A.Simplify the CI/CD pipeline when checking a project into a version control system, such as Git.
B.Efficiently port code between different languages, such as JavaScript and Python.

C.Run and simulate other operating systems within a development environment.

D.Quickly create any Python environment for testing and debugging purposes.

E.Quickly create an isolated Python environment with module dependencies.

Answer: DE

Explanation:

The correct answers are D and E. Python virtual environments are fundamentally designed to address dependency
management and isolation within Python development. They achieve this by creating self-contained directories where
specific versions of Python and its packages can be installed, independent of the system-wide Python installation or
other virtual environments.

Option D is correct because virtual environments facilitate rapid creation of dedicated, configurable Python
environments. This allows developers to experiment with different package combinations and versions without altering
the global Python installation or impacting other projects. This capability is crucial for testing and debugging, as
developers can easily recreate specific scenarios with exact package specifications.

https://en.wikipedia.org/wiki/Remote_procedure_call
https://www.redhat.com/en/topics/api/what-are-rest-apis

Option E is also correct. A core function of virtual environments is to isolate dependencies for projects. By installing
packages within a virtual environment, you ensure that a project's required libraries are separated from other
projects, avoiding conflicts between different version requirements. This is crucial to ensure project portability and
reproducible results.

Option A is incorrect because CI/CD pipelines might utilize virtual environments, but the virtual environments
themselves do not simplify the check-in process itself. While virtual environments ensure consistency during testing
phases within CI/CD, that's different from the act of checking in code.Option B is incorrect; virtual environments are
specific to Python and do not assist in porting code to different languages. Language conversion is a complex process
requiring other specialized tools.Option C is incorrect as virtual environments do not simulate operating systems. Tools
like Docker or virtual machines handle that kind of isolation, not Python virtual environments.

In essence, virtual environments are focused on providing localized and controlled Python environments for
development, enabling efficient dependency management and reproducible projects.

Further reading:

Python venv documentation: https://docs.python.org/3/library/venv.html
Python virtual environments guide: https://realpython.com/python-virtual-environments-primer/

Question: 3

What are two benefits of leveraging Ansible for automation of Cisco 10S XE Software? (Choose two.)

A.Ansible playbooks are packaged and installed on 10S XE devices for automatic execution when an [0S device reboots.
B.All 10S XE operating systems include Ansible playbooks for basic system administration tasks.

C.Itis a device-independent method for automation and can be used with any type of device or operating system.
D.Ansible playbooks can be written from the [0S XE EXEC command line to configure the device itself.

E.It does not require any modules of software except SSH to be loaded on the network device.

Answer: CE

Explanation:
The correct answers are C and E.

Let's break down why:

C.Itis a device-independent method for automation and can be used with any type of device or operating
system. Ansible is designed to be platform-agnostic. While specific modules cater to different operating systems and
devices, the core logic of using playbooks written in YAML remains consistent. This allows network engineers to
leverage the same automation framework across diverse environments, including Cisco I0S XE, Linux servers, and other
network devices. This eliminates the need to learn multiple automation languages, streamlining processes and
promoting consistency.

https://docs.ansible.com/ansible/latest/getting_started/index.html

E. It does not require any modules of software except SSH to be loaded on the network device. Ansible operates
on a push-based model, where the control node executes instructions on managed nodes. Typically, it uses SSH to
communicate and push configuration changes. No agents are required on the target Cisco 10S XE devices, simplifying
deployment and reducing resource consumption on these devices. This is a key advantage over agent-based solutions
which can add overhead and complexity to manage.

https://docs.ansible.com/ansible/latest/network/getting_started /network_getting_started.html

https://docs.python.org/3/library/venv.html
https://realpython.com/python-virtual-environments-primer/
https://docs.ansible.com/ansible/latest/getting_started/index.html
https://docs.ansible.com/ansible/latest/network/getting_started/network_getting_started.html

Now let's address why the other options are incorrect:

A. Ansible playbooks are packaged and installed on I0S XE devices for automatic execution when an 10S device
reboots. Ansible playbooks are executed from a central control node and are not installed or executed directly on the
10S XE devices. They are not triggered by device reboots.

B. All 10S XE operating systems include Ansible playbooks for basic system administration tasks. [0S XE
doesn't inherently include pre-built Ansible playbooks. Users need to create or obtain them separately.

D. Ansible playbooks can be written from the I0S XE EXEC command line to configure the device itself. Ansible
playbooks are created on a machine where Ansible is installed and typically aren't written directly on the 10S XE
device's EXEC command line.

In conclusion, Ansible's device-independent nature and agentless architecture provide compelling
advantages for automating Cisco 10S XE, making options C and E the correct choices.

Question: 4

return val=
{
“alertId”: “643451796765672516”,
“alertType”: “appliances went down”,
“deviceMac”: “e0:55:3d:6c:cl:7a”,
“deviceName: “MX65 cl:7a”,
“deviceSerial”: “Q2QN-58EA-XXXX",
“deviceUrl”: “https://nl43.meraki.com/Branch-1/n/.../manage/nodes/new wired status”,
“networkId”: “L 12345678907,
“networkName”: “Branch 17,
“networkUrl”: “https://nl43.meraki.com/Branch-1/n/.../manage/nodes/wired status”,
“occuredAt”: “2018-11-10T18:45:20.000000z7,
“organizationId”: “1234567”,
“organizationName”: “Meraki Demo”,
“organizationUrl”: “https://nl43.meraki.com/o/.../manage/organization/overview”,
“WsentAt: “2018-11-10T18:50:30.479982z",
“SharedSecret”: “asdfl1234~,

“yersion”: “0.17
gfer to the exhibit. The task is to create a Python script to display an alert message when a Meraki MX Security Appliance

which the switch went down?
A.

with return_val:
print (“The Switch: “+deviceName+ ™,
B. went down at: “t+occurredAt)

print (“The Switch: “+return_val.deviceName+ nooK
(ﬁent down at: “+return_val.occurredat)

Dprint{“The Switch: “+return_val[‘deviceName']+ LT
went down at: “+return_val[‘occurredﬁt’]")

with items as return val:
print (“The Switch: “+items.deviceName+ ™,

w%pt down at: “+items.occurredAt)
Answer:

Explanation:

print (“The Switch: “+return val[‘deviceName’']+ ™, \
went down at: “+return;val[‘occurredAt']")

Question: 5

{
“alertbhata”: {
“ecountNode”: 1,
“bssids”: [
“aa:bb:cc:dd:ee:ff”,
“]11:22:33:44:55:66"
1,
WminFirstSeen”: 1548512334,
“maxLastSeen”: 1548512802,
“ecountIsContained”: O,
“reason”: “Seen on LAN",
“wiredMac”: “aa:bb:cc:dd:ee:f0”
b
“alertId”: “629378047939282802",
“alertType”: “Air Marshal -Roque AP detected”,
“occuredAt”: “2019-01-26T14:18:54.000000Z",
“organizationId”: “123456”,
“organizationName”: “Organization”,
“organizationUrl”: “https://nl.meraki.com/o/.../manage/organization/overview”,
“networkId”: “L_ 123456789012345678",
“networkName’”: “Network”,
“networkUrl”: “https://nl.meraki.com/.../manage/nodes/list”,
“wersion”: W“0.1”
“SharedSecret”: “supersecret”,
“sentAt: “2019-01-26T14:35:20.442869Z",

}
Refer to the exhibit. The goal is to write a Python script to automatically send a message to an external messaging
application when a rogue AP is detected on the network. The message should include the broadcast SSID that is in the alert.
A function called ‘send_to_application’ is created, and this is the declaration:

send_to_application(message)

The exhibit also shows the data that is received by the application and stored in the variable return_val. Which Python code

completes the task?
A.

bssids =return_val[“bssids”]

for number in range(return_val[“alertData"][“countNode"]):
send to application (“ALERT: detected a bssid on the
network: “+ return val[“alertData”] [bssids] [number])

B.
bssids =return_val[“bssids"]
for value in bssids:

send to application (“™ALERT: detected a bssid on the
network: “+wvalue)

count = retutn val[“alertData”] [“countNode”]
bssids =return val[“alertData”] [count] [“bssids”]
for value in bssids:
send to application (“ALERT: detected a bssid on the

network: “+wvalue)
D.

bssids =return val[“alertData”] [“bssids"”]

for value in bssids:
send to application (“ALERT: detected a bssid on the
network: “+wvalue)

Answer: A

Explanation:
Explanation -
For number in range value is required for the application to send the alert. Bssids are also included.

Question: 6

Which two features are foundations of a software-defined network instead of a traditional network? (Choose two.)

A.control plane and data plane are tightly coupled

B.build upon a robust software stack

C.requires device by device-level configurations

D.automated through expressed intent to a software controller

E.requires significant physical hardware resources

Answer: BD

Explanation:

Here's a justification for why options B and D are features of software-defined networks (SDNs), while A, C, and E are
not:

Software-defined networking fundamentally shifts network control away from individual hardware devices to a
centralized software controller. Option B, "build upon a robust software stack," is crucial because SDN relies on
software for all control and management functions. This software stack provides the abstraction layer necessary for
network automation, orchestration, and programmability. Key components include the SDN controller, APIs for
communication, and applications for network services.

Option D, "automated through expressed intent to a software controller,” highlights the declarative nature of SDN.
Instead of configuring individual devices, administrators define the desired network behavior, and the controller
automatically implements the necessary configurations. This intent-based approach simplifies management and allows
for rapid network changes, moving away from traditional imperative, device-centric workflows.

In contrast, option A, "control plane and data plane are tightly coupled,” describes the traditional networking
model. SDNs decouple these planes, allowing for centralized control (control plane) and distributed packet
forwarding (data plane). Option C, "requires device by device-level configurations," is a characteristic of
traditional networking, not SDN, which abstracts away device-specific configurations. Finally, option E, "requires
significant physical hardware resources," doesn’t fundamentally differentiate SDN; while physical resources are
always needed, SDN emphasizes the abstract management and efficient

utilization of those resources by software. The core value of SDN comes from the software, not an increase in physical
hardware.

In summary, SDNs embrace programmability and automation through a robust software stack and centralized intent-
based management, differentiating them from traditional networking models.

Authoritative links:

Open Networking Foundation (ONF):https://opennetworking.org/ - A leading organization for SDN standards and
development.

SDX Central:https://www.sdxcentral.com/ - A comprehensive resource for information on SDNs and related
technologies.

Cisco DevNet:https://developer.cisco.com/ - Cisco's developer portal, often containing information on
automation and programmability with a focus on the network.

Question: 7

A new project called “device_status® must be stored in a central Git repository called "device_status” with the first file

named "device_status.py . The Git repository is created using the account python_programmer. Which set of commands
inserts the project into Git?
A.

git init
git add device status.py
git commit -m “Initial Revision”
git remote add origin \
https://git.cisco.com/python programmer/device status.git
Bjit push -u origin master

git init
git remote add origin \

https://git.cisco.com/python programmer/device status.git
git add device status.py
CEE: —
git pull
git imit
git remote add origin \
https://git.cisco.com/python programmer/device status.git
git add device status.py
it commit -m “Initial Revision”
git pull -u origin master

git imit
git add device status.py

git remote add python programmer/device status
git push

Answer: A

Explanation:

Reference:
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-us

https://opennetworking.org/
https://www.sdxcentral.com/
https://developer.cisco.com/
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line

ing-the-command-line

Question: 8

What are two characteristics of synchronous calls to APIs? (Choose two.)

A.They can be used only with certain programming languages.

B.They make your application less portable, so asynchronous calls are preferred.
C.They can add perceived latency to your application if data is not received.
D.They block until a response is returned from the servers.

E.They do not block while waiting for the API to be processed.

Answer: CD

Explanation:

Okay, here's a detailed justification for why options C and D are the correct characteristics of synchronous API calls,
along with supporting concepts and links:

Synchronous API calls operate in a request-response pattern where the client making the call waits for a response
from the server before proceeding with its next task. Option D, "They block until a response is returned from the
servers," accurately describes this behavior. The calling application's thread is essentially paused, or blocked, until the
API call completes and a response is received. This blocking nature is a fundamental characteristic of synchronous
operations.

Option C, "They can add perceived latency to your application if data is not received," is also correct due to this
blocking behavior. Since the application is waiting, any delays in the server processing the request or transmitting
the response are directly translated into perceived latency for the user. For example, if a user clicks a button that
triggers a synchronous API call and that call takes a few seconds, the application will appear frozen or slow until the
API call completes. This perceived delay is often undesirable in user-facing applications.

Option A is incorrect. Synchronous API calls are not restricted to specific programming languages. Most languages
support synchronous communication patterns. Option B is misleading; while asynchronous calls can be preferred in
certain scenarios to improve responsiveness, synchronous calls aren't inherently less portable. Synchronous and
asynchronous have use cases, therefore it's not a blanket rule to prefer one over the other. Finally, option E is
incorrect because, by definition, synchronous calls do block while waiting for a response.

In summary, synchronous API calls are characterized by their blocking nature and the resulting potential for perceived
latency, while they are not dependent on language or portability. Their simple request-response pattern, though
straightforward, makes them unsuitable for latency-sensitive situations.

Authoritative Links for Further Research:

1. Understanding Synchronous and Asynchronous Calls:https: //www.geeksforgeeks.org/difference-
between-synchronous-and-asynchronous-calls/ - This article provides a clear explanation of the difference
between synchronous and asynchronous operations with examples.

2. API Design Patterns: https://cloud.google.com/apis/design - This link by Google covers API design
and includes a discussion on synchronous and asynchronous patterns.

3. Synchronous vs Asynchronous Operations:https://www.baeldung.com/cs/synchronous-vs-
asynchronous - This article provides an in-depth discussion of both models with programming
examples.

https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://www.geeksforgeeks.org/difference-between-synchronous-and-asynchronous-calls/
https://www.geeksforgeeks.org/difference-between-synchronous-and-asynchronous-calls/
https://www.geeksforgeeks.org/difference-between-synchronous-and-asynchronous-calls/
https://www.geeksforgeeks.org/difference-between-synchronous-and-asynchronous-calls/
https://www.geeksforgeeks.org/difference-between-synchronous-and-asynchronous-calls/
https://cloud.google.com/apis/design
https://www.baeldung.com/cs/synchronous-vs-asynchronous
https://www.baeldung.com/cs/synchronous-vs-asynchronous
https://www.baeldung.com/cs/synchronous-vs-asynchronous
https://www.baeldung.com/cs/synchronous-vs-asynchronous
https://www.baeldung.com/cs/synchronous-vs-asynchronous
https://www.baeldung.com/cs/synchronous-vs-asynchronous

Question: 9

neighbors = ['sl’, ‘s2’, 's37]
switch = {‘hostname’ :"nexus’,’os’:77.0.3","'neighbors’ :neighbors}
print (switch|[‘neighbors’][1])

Refer to the exhibit. What is the result when running the Python scripts?

Asl
B.s2
C.s1,s2,s3
D.s3

Answer: B

Explanation:

L)

neighbors = ["sl1°, 'si', 's3']
switch = {"hostname': 'nexus’','0s':'7.0.3", "neighbors’ :neighbors
print(switch[' 'neighbors”][1])

W P e

CommandLine Arguments

Result
CPU Time: 0.02 sec(s), Memory: 7604 kilobyte(s)

sz

Question: 10

DRAG DROP -

Drag and drop the code from the bottom onto the box where the code is missing in the Ansible playbook to apply the
configuration to an interface on a Cisco 10S

XE device. Not all options are used.

Select and Place:

- name: configure interface settings

lines:

— 4p address 172.31.1.1 255.255.255.0
— no shutdown

: interface GigabitEthernetl/0

ioscnd parents
losconfig interface
iosxe ios config

Answer:

- name: configure interface settings
ios config

lines:
- 1p address 172.31.1.1 255.255.255.0
- no shutdown

parents : interface GigabitEthernetl/0
ioscnd parents

losconfig interface
iosxe ios _config

Explanation:
10S_Config.

Parents.

Question: 11

An engineer stored source code in a Git repository and is ready to develop a new feature. The production release is stored in
the “master’ branch. Which commands create the new feature in a separate branch called “feature’ and check out the new

version?
A.

git branch \
https://git.cisco.com/python programmer/device status:feature

Bgit checkout device status:feature

git remote add branch python programmer/device status:feature
git pull

glit branch feature
git checkout feature
D.

git remote add branch \
https://git.cisco.com/python programmer/device status:feature

git push

Answer: C

Explanation:

Reference:
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

Question: 12

What is a benefit of developing an application in a Python virtual environment?

A.The application operates in multiple target systems simultaneously.
B.The application supports concurrency or multithreading.
C.The application operates across systems that have different operating systems.

D.The development environment is isolated from Python projects that already exist.

Answer: D

Explanation:
Justification:
The correct answer is D. The development environment is isolated from Python projects that already exist.

Python virtual environments are a fundamental practice in Python development for managing project dependencies and
ensuring consistency. They create an isolated space for each project, preventing conflicts between package versions
required by different projects. This isolation is crucial because various projects might rely on different versions of the
same library. Without virtual environments, installing a package for one project might inadvertently break another
project using an incompatible version. Option D precisely captures this core benefit of isolation, ensuring that the
development environment remains clean and dedicated to the specific needs of the project. Options A, B, and C are not
primary benefits of using virtual environments.

Virtual environments don't inherently make an application run on multiple systems (A), offer concurrency or
multithreading (B), or directly support cross-0S operations (C). Instead, they promote modularity and avoid
dependency clashes, leading to more reliable and maintainable applications. The isolation offered by a virtual
environment makes collaboration among developers easier because they can recreate identical environments and avoid
"works on my machine" scenarios.

Authoritative Links:

Python Virtual Environments Documentation:https://docs.python.org/3 /tutorial /venv.html
Real Python - Python Virtual Environments:https: //realpython.com/python-virtual-environments-primer/
GeeksforGeeks - Python Virtual Environment:https://www.geeksforgeeks.org/python-virtual-environment/

Question: 13

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://docs.python.org/3/tutorial/venv.html
https://realpython.com/python-virtual-environments-primer/
https://realpython.com/python-virtual-environments-primer/
https://www.geeksforgeeks.org/python-virtual-environment/

“interface-configuration’”: [

{
“Wactive’”: “act”,
“interface—-name”: “LoopbackO0’,
“description”: “PRIMARY ROUTER LOOPBACK"
}

}

“WCisco-I0S5-¥XR-ifmgr-cfg:interface-configurations”:

{

Refer to the exhibit. Which type of YANG container is described by the JSON instance provided?

A.interface-configurations
B.active

C.interface-name
D.description

Answer: A

Explanation:

Reference:

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-0/programmability /configuration/

guide/b-programmability-cg-asr9000-70x/b- programmability-cg-asr9000-70x_chapter_011.html

Question: 14

module: Cisco-I0S-XE-vlan-oper
+=-=ro vlans
+--ro wvlian* [id]
+——ro id uintlé
+--ro name? string
+--ro status?
+--ro ports* []

| +--ro interface? string

| +--ro subinterface? uint32

+--ro vlan-interfaces* [interface]
+--ro interface string

Elefer to the exhibit. Which NERCONKotoeel pesiatian is usedyjq gterpot with the YANG model?

vlan-iso-xe-oper:vlan-status-type

A.<edit-config>
B.<get>
C.<get-config>
D.<copy-config>

Answer: B

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-0/programmability/configuration/guide/b-programmability-cg-asr9000-70x/b-%20programmability-cg-asr9000-70x_chapter_011.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-0/programmability/configuration/guide/b-programmability-cg-asr9000-70x/b-%20programmability-cg-asr9000-70x_chapter_011.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-0/programmability/configuration/guide/b-programmability-cg-asr9000-70x/b-%20programmability-cg-asr9000-70x_chapter_011.html

Explanation:

The exhibit is a read-only YANG leaf ("ro vlan") therefore is classed as "state" date and not config data. As such the
<get> statement is what you need to use to interact with this particular YANG model.

Question: 15

<rcp xmlns="urn:ietf:params:xml:ns:netconf:base:1.0” message-id="101">
<get>
<filter>
<native xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-native”>
<ntp>
<server xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ntp”>
<server-list>
<ip-address>10.11.10.65</ip-address>
</server-list>
<server
</ntp>
</native>
<ntp-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ntp-oper’”>|
<ntp-status-info>
<ntp-associations>
<peer-stratum/>
</ntp-associations>
</ntp-status-info>
</ntp-oper-data>
</filter>
</get>
</rcp>

Refer to the exhibit. How many YANG models does the NETCONF <get> operation interact with?

A.one
B.two
C.three
D.four

Answer: C

Explanation:

C - 3 cause <get> will get both config and oper data.

Question: 16

Which statement describe the difference between OpenConfig and native YANG data models?
A.Native models are designed to be independent of the underlying platform and are developed by vendors and standards
bodies, such as the IETF.

B.Native models are developed by individual developers and designed to apply configurations on platforms.

C.OpenConfig models are developed by vendors and designed to integrate to features or configurations that are
relevant only to that platform.

D.Native models are developed by vendors and designed to integrate to features or configurations that are relevant
only to that platform.

Answer: D

Explanation:

The correct answer is D. Native models are developed by vendors and designed to integrate to features or
configurations that are relevant only to that platform.

Here's a detailed justification:

YANG (Yet Another Next Generation) is a data modeling language used to describe configuration and
operational data for network devices. Both OpenConfig and native YANG models use YANG as their foundation
but differ significantly in their scope and purpose.

Native YANG Models: These are developed specifically by network equipment vendors like Cisco, Juniper, or Arista.
They are tailored to the unique features, functionalities, and hardware specifications of their particular devices. Native
models allow for granular control over all aspects of a device, including specific vendor-defined features. This also
means they can be very specific to the vendor's device and may not be compatible across different vendors' products.
Because native models expose the whole of the vendor's CLI capabilities through a structured data model, they tend to
have more vendor-specific components and are tightly coupled with the specific implementation of the underlying
platform.These are the data models provided by vendors that provide access to the unique CLI and capabilities of their
particular operating system.

OpenConfig Models: In contrast, OpenConfig models are created by a collaborative group of network operators and
technology vendors with the goal of developing vendor-agnostic network APIs and data models. OpenConfig aims for
consistency and interoperability across different vendors’ equipment. These models are designed to be abstract and
are not necessarily a direct mapping of the device's underlying CLI. They focus on widely used, fundamental
networking concepts, enabling operators to manage networks from various vendors more consistently, aiming to
simplify the process of automation. OpenConfig models use higher-level concepts that abstract away the details of the
underlying hardware and platform.

Option A is incorrect because it reverses the characteristics of native and OpenConfig models; OpenConfig models
are designed for platform independence, not native models. Option B is inaccurate as native models are vendor-
developed, not by individual developers. Option C is incorrect because OpenConfig models are designed for
interoperability between different platforms.

In summary, while both are YANG based, native models expose vendor-specific device features, while OpenConfig
aims for abstraction and vendor-agnostic management. This difference in design philosophy is why option D
accurately distinguishes between the two.

Authoritative Links:

OpenConfig:https://www.openconfig.net/

YANG (RFC 7950):https://datatracker.ietf.org/doc/rfc7950/

Cisco's Introduction to Network Programmability:https://developer.cisco.com/site/programmability/ (Search for
information about YANG and model-driven programmability)

Question: 17

https://www.openconfig.net/
https://datatracker.ietf.org/doc/rfc7950/
https://developer.cisco.com/site/programmability/

import requests
import sys

requests.package.urllib3.disable warnings ()

HOST r10.3.2:3
PORT = 9443

USER = ‘user’
PASS = ‘password’

def main() :
url = “https://{h}:{p}/restconf/data/Cisco-I0S-XE-native:native/
hostname” . format (h=HOST, p=PORT)

headers = {‘Content-Type’: ‘application/ L

‘Accept’: ‘application/ '}

response = requests.get (url, auth=(USER,PASS),
headers=headers, verify=False)
print (response. text)

if name = ' main ':

sys.;;it[magﬁ]))

Refer to the exhibit. An engineer creates a Python script using RESTCONF to display hostname information. The code must
be completed so that it can be tested.
Which string completes the highlighted areas in the exhibit?

A.yang-data+json
B.yang +json
C.yang.data+json
D.json

Answer: A

Explanation:

Reference:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/restc
onf_prog_int.html

Question: 18

Which statement is true for Cisco 10S XE Software?

A.RESTCONF supports JSON and XML and NETCONF supports XML.
B.RESTCONF supports XML and NETCONF supports JSON and XML.
C.RESTCONF and NETCONF supports JSON and XML.

D.RESTCONF supports XML and NETCONF supports JSON.

Answer: A

Explanation:

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/restconf_prog_int.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/restconf_prog_int.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/restconf_prog_int.html

The correct answer is A: RESTCONF supports JSON and XML, and NETCONF supports XML.

Let's break down why:

RESTCONF is an HTTP-based protocol that uses REST principles for network configuration and management.

It leverages standard web technologies, making it easy to integrate with existing IT tools. A key aspect of REST is its
ability to transfer data using various formats. Specifically, RESTCONF on Cisco I0S XE supports both JSON (JavaScript
Object Notation) and XML (Extensible Markup Language) for representing data. JSON is often favored for its simplicity
and ease of parsing in web applications, while XML offers more structured options, especially when data schemas are
more complex.

NETCONF is a protocol designed explicitly for network configuration, utilizing a client-server model. It employs XML
as its sole encoding method for representing configuration data and operations. NETCONF focuses on providing robust
mechanisms for managing network devices and implementing configuration transactions. While it has a richer set of
capabilities than RESTCONF, its restriction to XML is a fundamental design decision.

Therefore, statement A accurately captures the supported data formats for RESTCONF and NETCONF within the context
of Cisco I0S XE. Option B is incorrect because it reverses the data format support. Option C is incorrect because
NETCONF does not support JSON. Option D is incorrect as RESTCONF supports both JSON and XML.

In summary, Cisco 10S XE uses RESTCONF with the flexibility of JSON and XML, while NETCONF exclusively employs
XML for its network management operations. This difference in data representation highlights the varied design
philosophies of each protocol. RESTCONF is more versatile for web-based integrations, whereas NETCONF is a more
tightly defined protocol optimized for complex network configuration.

Authoritative Links:

1. Cisco DevNet - RESTCONF:https://developer.cisco.com/docs/ios-xe/#!restconf-on-ios-xe 2. Cisco
DevNet - NETCONF:https://developer.cisco.com/docs/ios-xe/#!netconf-on-ios-xe 3. IETF RFC 6241
- Network Configuration Protocol (NETCONF):

https://datatracker.ietf.org/doc/html/rfc6241
4.1ETF RFC 8040 - RESTCONF Protocol:https://datatracker.ietf.org/doc/html/rfc8040

Question: 19

Which curl command is used to update the SNMP community of network ID "1234567" to read-only? A.

B curl -1 -H ‘X-Cisco-Meraki-API-Key: <key>' \
-H ‘Content-Type: application/json’ \
-X PUT --data-binarcy ‘{ \
“Waccess” : "users”, \
“communityString’: "readonly”}’ \
‘https://api.meraki.com/api/v0/networks/1234567/snmpSettings’
C.

curl -L -H ‘X-Cisco-Meraki-API-Key: <key>' \
-H ‘Content-Type: application/json’ \
-X PUT --data-binary ‘{ \
“access”: "community”, \
“wocommunityString”:”readonly”}’ \
‘https://api.meraki.com/api/v0/networks/1234567/snmpSettings’

https://developer.cisco.com/docs/ios-xe/#!restconf-on-ios-xe
https://developer.cisco.com/docs/ios-xe/#!netconf-on-ios-xe
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040

curl -L -H ‘X-Cisco-Meraki-API-Key: <key>’' \
-H ‘Content-Type: application/json’ \
=X PUT --data-binary ‘{ \
“access’” :"users”, \
“usersname” : “snmp”, \
“passphase” : “readonly”}’ \
‘https: //api.meraki.com/api/v0/networks/1234567/snmpSettings’

D.
curl -L -H ‘X-Cisco-Meraki-API-Key: <key>' \
-H ‘Content-Type: application/json’ \
-X POST --data-binary ‘{ \
“access”: “community”, \
“ecommunityString”:”readonly”}’ \
‘https: //api . meraki.com/api/v0/networks/1234567/snmpSettings”’
Answer: B
Explanation:

PUT is used to update the snmp network ID. The access has to be community and not users. option B is correct.

Question: 20

module: ietf-ip
augment /if:interfaces/if:interface:
+--rw ipvd!

| +--rw enabled? boolean
+--rw forwarding? boolean
+—--rw mtu? uintlé
+—-rw address* [ip]
| +--rw ip inet:ipvd-address-no-zone

+=--rw (subnet)

|
|
|
|
|
| | +--:(prefix-length)
|
|
|
|
|

|
|
| | | +--rw prefix-length? uints
| | +--:{netmask)
| | +--rw netmask? yang:dotted-guad (ipv4-non-contiguous-netmasks) ?
| +--ro origin? ip-address-origin
+=-=-Tw neighbor* [ip]
| +--Iw inet:ipvd-address-no-zone
Tefeqto the eM&M&ﬂkNEEGQNFMEg@yt type is kepReseplgAb fapwaddress™ [ip]?
Alist
B.leaf-list

C.container

D.submodule

Answer: A

Explanation:

Symbols after data node names: "?" means an optional node, "!" means a presence container, and "*" denotes a list and
leaf-list.

Question: 21

The automation engineer must replace device configuration using RESTCONF. How is this configured using the Python
library Requests?

A.delete()
B.post()

C.put()
D.patch()

Answer: C

Explanation:

The correct answer is C. put(). RESTCONF utilizes standard HTTP methods to interact with network devices.
When the goal is to completely replace a device's configuration, the PUT method is the appropriate choice.

PUT requests are idempotent, meaning that making the same request multiple times will result in the same outcome -
the resource will be replaced with the provided payload. This behavior makes PUT ideal for configuration replacement,
as it ensures a consistent state regardless of prior configurations. In contrast, the POST method is typically used to
create new resources, while DELETE is used to remove them. The PATCH method, although also used for updates, is
meant for partial modifications, not complete replacements. Since the question specifies a full replacement of the
configuration, using patch() could lead to unintended, residual configurations. Using the Python requests library,
requests.put() sends an HTTP PUT request to the specified RESTCONF endpoint, effectively applying the new
configuration in place of the old one. This operation overwrites the resource at the target URI. The provided payload
will define the complete, new configuration for the device. If using a different HTTP method, such as post(), the request
would either create an additional, unwanted resource or result in an error. Therefore, put() is the only appropriate
method to replace the existing configuration. For further understanding, please refer to:

RFC 7231 (HTTP/1.1):https://www.rfc-editor.org/rfc/rfc7231#section-4.3.4 This document provides official
specifications on the semantics of the PUT method.

RESTCONF Overview:https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-6/b_16-
6_programmability_cg/m_restconfhtml This document from Cisco provides a general explanation of RESTCONF
usage, illustrating the methods and their functionalities.

Python Requests library:https://requests.readthedocs.io/en/latest/ This is the official documentation for the
requests library, explaining how to use methods like put(), post(), delete(), and patch().

Question: 22
Which function is available in NETCONF and unavailable in RESTCONF?

A.configuration changes are automatically activated
B.uses the YANG data models to communicate
C.supports JSON and data encoding

D.validates the content of a candidate datastore

Answer: D
Explanation:
The correct answer is D: validates the content of a candidate datastore. NETCONF and RESTCONF are both network

management protocols that leverage YANG data models for structured data exchange, and both support various data
encodings like JSON. A key distinction, however, lies in how they handle configuration

https://www.rfc-editor.org/rfc/rfc7231#section-4.3.4
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-6/b_16-6_programmability_cg/m_restconf.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-6/b_16-6_programmability_cg/m_restconf.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-6/b_16-6_programmability_cg/m_restconf.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-6/b_16-6_programmability_cg/m_restconf.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-6/b_16-6_programmability_cg/m_restconf.html
https://requests.readthedocs.io/en/latest/

changes. NETCONF offers a more sophisticated, transaction-oriented approach using a "candidate datastore". This
datastore acts as a staging area where configuration changes can be validated against the defined YANG model before
being committed to the "running datastore". This validation ensures that only valid

configurations are applied, reducing the risk of errors and network disruptions. RESTCONF, while using YANG for data
definitions and supporting data encoding, directly modifies the running configuration through HTTP methods. It lacks
the explicit concept of a candidate datastore and the built-in validation process that NETCONF provides. This makes
NETCONF better suited for complex configuration scenarios that require high reliability and consistency. Specifically,
NETCONF's <validate> operation can be used to check configuration before committing, which is not available in
RESTCONF. In summary, although both protocols use YANG models and support encoding, NETCONF's transaction-
based configuration with candidate datastore and validation makes it distinct from RESTCONF.

Relevant Links:

NETCONF Protocol:https://datatracker.ietf.org/doc/html/rfc6241
RESTCONF Protocol:https://datatracker.ietf.org/doc/html/rfc8040
YANG Data Modeling Language:https://datatracker.ietf.org/doc/html/rfc7950

Question: 23

Which setting is used for the dampening period when configuring an on-change publication for YANG-push versus
OpenConfig?

Amnull
B.-1
C.0
D.1000

Answer: C

Explanation:

The correct answer is C. 0.

When configuring on-change publications with YANG-push, the dampening period determines how long a system
waits after a change before sending a notification. A dampening period helps to prevent a flood of notifications when
rapid, transient changes occur. It allows for a more stable and less noisy stream of updates. YANG-push is designed
to be highly efficient and responsive; therefore, it's often desired to send notifications as immediately as possible
following a relevant change, rather than introduce a delay.

In this context, a value of "0" indicates that no dampening is applied and notifications are sent as soon as a change is
detected. While a non-zero value is used to introduce a delay, the question specifically seeks the setting for minimal
delay and immediate publication. When using a non-zero value, the notification will be sent after that amount of
seconds even if the resource is changed again.

OpenConfig uses a different dampening mechanism, while the question refers to "YANG-push" and hence the correct
answer is “0”. Values like "-1" or "null" are typically not recognized for dampening purposes and would most likely
result in errors or default behaviors, not the intended immediate publishing. A large value like "1000" would introduce
a significant delay, going against the concept of immediate on-change publication.

Therefore, option C, 0, accurately represents the setting for no dampening or immediate change notification using
YANG-push.

Authoritative Links:

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc7950

RFC 8639 - Subscription to YANG Notifications:https://datatracker.ietf.org/doc/html/rfc8639 (This is the primary
RFC defining YANG push, and while it doesn't explicitly define the dampening setting, it provides the basis on which
such settings are built).

Cisco Documentation on YANG-push: (Refer to Cisco's official documentation on configuring YANG-push on specific
devices; this will provide context on how they implement the dampening settings). Note that direct links may vary
with the Cisco device and software versions, you can search the device documentation on cisco.com for the keyword
"yang push" and your device model to find the relevant page.

Question: 24

Setting is used for the dampening period when configuring an on-change publication for YANG-push versus

OpenConfig.
What are two characteristics of synchronous calls to APIs? (Choose two.)

A.They block until a response is returned from the servers

B.They make an application less portable, so asynchronous calls are preferred
C.They add perceived latency to an application if data is not received

D.Calls are limited to specific programming languages

E.They do not block while waiting for the API to be processed

Answer: AC

Explanation:

The correct answers are A and C. Synchronous API calls, by their nature, operate in a blocking manner. This means that
when an application initiates a synchronous request, it pauses its execution and waits until it receives a response from
the server. This "waiting" period directly translates to perceived latency for the user, especially if the server takes time
to process the request. Option A accurately reflects this behavior.

Furthermore, the application's flow is held up because it's dependent on the server's response, leading to a direct
increase in latency. Option C is also correct as perceived delays are unavoidable while the client waits for a
synchronous API call to return.

Options B, D, and E are incorrect. Synchronous calls don't intrinsically make an application less portable (B), as both
synchronous and asynchronous methods can be implemented across different platforms and languages. Synchronous
calls are not limited to specific languages (D); most programming languages support making both synchronous and
asynchronous API calls. Finally, synchronous calls inherently do block while waiting for API processing to complete (E).

Further research on synchronous versus asynchronous API calls and their impact on application performance can be
found here:

Microsoft Docs on Asynchronous Programming:https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
Red Hat - Understanding synchronous and asynchronous processing in APIs:

https://developers.redhat.com/blog/2018/10/23 /understanding-synchronous-and-asynchronous-processing-in-apis

These resources provide a more comprehensive understanding of the characteristics and use cases of
synchronous and asynchronous communication patterns.

Question: 25

https://datatracker.ietf.org/doc/html/rfc8639
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://docs.microsoft.com/en-us/dotnet/standard/async-in-depth
https://developers.redhat.com/blog/2018/10/23/understanding-synchronous-and-asynchronous-processing-in-apis
https://developers.redhat.com/blog/2018/10/23/understanding-synchronous-and-asynchronous-processing-in-apis

module: Cisco-IOS-XE-interfaces-oper
+--ro interfaces
+--ro interface* [name]
+--ro name
+--ro interface-type?
+--ro admin-status?
+--ro oper-status?
+--ro last-change?
+--ro if-index?
+--ro phys-address?
+--ro higher-layer-if*
+--ro lower-layer-if*
+--ro speed?
+--ro statistics
| +--ro discontinuity-time?
| +--ro in-octets?
| +--ro in-unicast-pkts?

string
interfaces-ios-xe-oper:ietf-intf-type
interfaces-ios-xe-oper:intf-state
interfaces-ios-xe-oper:oper—-state
yang:date—and-time

int32

yang:mac-address

string

string

uinté4

yang:date-and-time
uinté64
uint64

Refer to the exhibit. What is a characteristic of the tree?

A.three optional metrics
B.two leaf-lists

C.ten leaf-lists

D.three containers

Answer: B

Explanation:

Correct answer is B:two leaf-lists.

Question: 26
DRAG DROP -

$ pyang —f tree ietf-interfaces.yang
module: i1etf-interfaces
+——rw i1nterfaces
+——rw interface* [name]

|

| +——rw name string

| +-—-rw description? string

| +-—-rw type identityref

| +——rw enabled? boolean

| +——ro statistics

| +-—ro discontinuity-time yang:date—and-time
| +-—ro in—unicast-pkts? yang:countercd

| +-—ro in-broadcast-pkts? yang:counterét4

¥x—ro 1nterfaces—state
x——ro i1nterface* [name]

X——ro name string

x--ro type identityref

x——ro admin—-status enumeration {if-mib}?

x——rxro oper—status enumeration

x—-—-ro statistics
x——ro discontinuity—time yang:date—and-time
x--ro in—-octets? yang:counteré4
Xx-—-ro in—unicast-pkts? yang:counterc4d

Refer to the exhibit. Drag and drop the code from the bottom onto the box where the code is missing to complete the ncclient
request that captures the operational data of the interfaces of a Cisco 10S XE device. Options may be used once, more than
once, or not at all.

Select and Place:

from ncclient import manager
import xml.dom.minidom

USERNAME = ‘cisco’
PASSWORD = ‘cisco’
HOST = *ig.10.28_3181°
data = “&7
;4
= >
<zgtatistics></statistics>
</ >
</ >

LI

with manager.connect (host=HOST,
hostkey wverify=False,

c = m.get(filter=("

xml xml .dom.minidom.parseString(c)
xml pretty sStr = xml.toprettyxml ()
print (Xml pretty str)

password=PASSWCRD, port=830,

xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces”>

username=USERNAME,
device params=|(‘name’:’iosxe’}) as m:

*, data)).data xml

interfaces-state

interface-state

interfaces

Xpath subtree

interface

Answer:

from ncclient import manager
import xml.dom.minidom

USERMNAME = ‘gcisco’
BASSWORD = ‘cisco’
HOST = *10.10.28.181"

data = “rf
< |interface-state xmins="urn:ietf:params:xml:ns:yang:ietf-interfaces”>
< |xpath >

<statistics></statistics>

</ |interface >

</ |interface-state >

ANFTr

with manager.connect (host=HOST, password=PASSWORD, port=830, username=USERNAME,
hostkey verify=False, device_ params=(‘name’:’iosxe’}) as m:

c = m.get (filter=(" |subtree “, data)) .data xml

xm]l = xml.dom.minidom.parseString(c)
xml pretty str = xml.toprettyxml ()
print (xml pretty str)

interfaces-state interface-state interfaces

xpath subtree interface

Question: 27
When working with MV Sense APIs, which type of protocol is MQTT based upon?

A.publish-subscribe messaging protocol
B.simple mail transport protocol
C.heavyweight messaging protocol

D.computer vision protocol

Answer: A

Explanation:

The correct answer is A. publish-subscribe messaging protocol. MQTT (Message Queuing Telemetry Transport) is
fundamentally built upon the publish-subscribe architectural pattern. This pattern decouples message senders
(publishers) from message receivers (subscribers). Publishers send messages to a central broker, without knowing
specific recipients. The broker then filters and distributes messages to subscribed clients based on topics.

This is crucial for efficient communication in scenarios like IoT and sensor networks, where devices may have
intermittent connectivity or limited resources. The lightweight nature of MQTT makes it well-suited for

constrained environments often encountered when working with sensors, such as those found in the MV Sense
environment. These sensors may frequently send data updates about their readings, and publish-subscribe
allows for efficient consumption of this data by interested applications.

MQTT avoids the need for direct point-to-point connections between each sensor and each application, which would be
much more complex and resource intensive. Using a central broker simplifies network management and message
routing. In the context of MV Sense APIs, which provide access to sensor data, MQTT enables a scalable and adaptable
way to handle many sensor updates.

This is quite different from protocols like Simple Mail Transport Protocol (SMTP) which is designed for email transport.
SMTP operates on a push model, specifically for user-to-user messaging. A "heavyweight" protocol is a
mischaracterization of MQTT, and it is definitively not a computer vision protocol.

In summary, the inherent publish-subscribe nature of MQTT is its defining characteristic and what makes it perfect
for use in sensor networks and data streaming environments like MV Sense APIs.

Authoritative links for further research:
MQTT Specification:http://docs.oasis-open.org/mqtt/mqtt/v5.0/0s/mqtt-v5.0-os.html

MQTT Explained (IBM):https://www.ibm.com/topics/mqtt
Understanding MQTT:https://www.hivemq.com/mqtt-essentials/

Question: 28

http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://www.ibm.com/topics/mqtt
https://www.hivemq.com/mqtt-essentials/

{

“version™ “1.0",
‘response”: [

{

‘healthScore”: 73,

“totalCount™: 11,

‘goodCount”: 8,

‘unmonCount”: 3,

“fairCount™ 0,

“badCount™: 0,

“entity": null,

“timeinMillis™: 1563217800000
}

]

u m. o

measuredBy": “global”,
‘latestMeasuredByEntity”: null,
‘latestHealthScore”: 73,
“monitoredDevices”: 8,
‘monitoredHealthyDevices": 8,
‘monitoredUnHealthyDevices™: 0,
‘unMonitoredDevices™: 3,
‘healthDistribution™ [
{
‘category™: "Access”,
“totalCount™ 9.
“healthScore™: 100,
“goodPercentage”: 100,
“badPercentage™ 0,
‘fairPercentage”: 0,
“unmonPercentage”™ 0,
“goodCount™ 3,
“badCount™: 0,
“fairCount™ 0,
‘unmonCount™: 0

¢

“time”; “2019-07-15T19:10:00.000+0000",

{

Ny Nt

‘category”: “Distribution”,
‘totalCount™: 2,
*healthScore™ 100,
‘goodPercentage™ 100,
‘badPercentage”: 0,
‘fairPercentage”: 0,
‘unmonPercentage”: 0,
‘goodCount™ 2,
‘badCount™ 0,
“fairCount”: 0,
“‘unmonCount™: 0

‘category™: “WLC",
‘totalCount™ 2,
‘healthScore™ 50,
‘goodPercentage™ 0,
‘badPercentage”: 0,
‘fairPercentage™: 0,
‘unmonPercentage”: 100,
‘goodCount™ 1,
‘badCount”: 0,
“fairCount™ 0,
“unmonCount”: 1

Refer to the exhibit. Which device type is functioning in a degraded state?

A.access point
B.distribution switch
C.access switch
D.wireless LAN controller

Answer: D

Explanation:

Correct answer is D:wireless LAN controller.

Question: 29

Which two Netmiko methods are used to configure a device? (Choose two.)

A.send_config()
B.send_control_from_file()
C.send_config_set()
D.send_command()

E.send_config_from_file()

Answer: CE

Explanation:

The correct Netmiko methods for configuring a device are send_config_set() and send_config_from_file().

send_config_set() is designed to take a list of configuration commands as input and apply them to the device. This
method is suitable for dynamic configurations where the commands are generated programmatically or stored in a list
within your automation script. It allows for granular control over the configuration changes being applied. Netmiko
intelligently handles the necessary command sequences to enter configuration mode, send the commands, and exit
configuration mode.

send_config_from_file() is used when configuration commands are stored in an external text file. This is useful for
standard configurations, where the entire device configuration or a segment of it can be pre-written and applied. The
method reads the commands from the specified file and sends them to the device, simplifying the process of managing
large or complex configurations.

send_command() is primarily for executing show commands or other operational commands, not for making
configuration changes. send_control_from_file() is not a standard Netmiko method, and therefore, it is not an
answer. send_config() is also not a standard Netmiko method.

These two methods, send_config_set() and send_config_from_file(), provide a flexible way to push

configurations to network devices using Netmiko, enabling the automation of network administration tasks such as
changing interface parameters, configuring routing protocols, and setting access lists. They work through an SSH
connection established by Netmiko, communicating via the device's command-line interface.

Here are authoritative resources for further study:

1. Netmiko Documentation (Configuring Devices):https://pynet.twb-tech.com/blog/netmiko-
config.html

2. Practical Python with Netmiko:https://www.youtube.com/watch?v=d36a96-U8-g

3. Network Automation with Python and Netmikohttps://realpython.com/network-automation-python-
netmiko/

Question: 30

https://pynet.twb-tech.com/blog/netmiko-config.html
https://pynet.twb-tech.com/blog/netmiko-config.html
https://pynet.twb-tech.com/blog/netmiko-config.html
https://pynet.twb-tech.com/blog/netmiko-config.html
https://www.youtube.com/watch?v=d36a96-U8-g
https://realpython.com/network-automation-python-netmiko/
https://realpython.com/network-automation-python-netmiko/
https://realpython.com/network-automation-python-netmiko/
https://realpython.com/network-automation-python-netmiko/

— name: Create VRFs as defined by local vrfs
ios vrf:
vrfs: “{{ local vrfs }}”

state:

register: addvrft

Refer to the exhibit. An engineer creates an Ansible playbook to configure VRF information using a local_vrfs variable.
The code must be completed so that it can be tested. Which string completes the code?

A.present
B.up
C.on

D.active

Answer: A

Explanation:

Reference:
https://docs.ansible.com/ansible/latest/modules/ios_vrf module.html

Question: 31

DRAG DROP -

Drag and drop the commands to the Ansible playbook that applies configuration to an interface on a Cisco 10S XE device. Not
all options are used.
Select and Place:

Answer Area

- name: configure interface settings
[ioscmd | [interface| |
I parents l I e | lines:

-ip address 172.31.1.1 255.255.255.0
liosconfigl hos_confiq -no shutdown
interface GigabitEthernetl/0

Answer:

Answer Area

- name: configure interface settings

I ioscmd I Iinterfacel :

I parents | I josxe J lines:
-ip address 172.31.1.1 255.255.255.0

|iosconfig| |ios_config1 -no shutdown

: interface GigabitEthernetl/0

Explanation:

https://docs.ansible.com/ansible/latest/modules/ios_vrf_module.html

Reference:
http://imxing.cn/?p=464

Question: 32

<rpc message-id=7101” xmlns="urn:ietf:params:xml:ns:netconf:base:1.07>
<establish-subscription
xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications”
xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push”>
<stream>yp:yang-push</stream>
<yp:xpath-filter>/mdt-oper:mdt-oper-data/mdt-subscriptions</yp:xpath-filter>

<yp: >1000</yp: >
</establish-subscription>
</rpc>

efer to the exhibit. Which XML tag completes this NETCONF telemetry subscription with a Cisco [0S XE device?

A.crontab
B.cadence
C.frequency
D.period

Answer: D

Explanation:

Reference:

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1610/b_1610_programmability_cg/mod
el_driven_telemetry.html

Question: 33
Which two statements are benefits of YANG-push telemetry data over traditional data collection methods? (Choose

two.)

A.The subscription requests use less bandwidth than SNMP polls. B.It
uses UDP rather than TCP.

C.You can precisely define data subscriptions.
D.It scales better than SNMP.

E.It is supported on more devices than SNMP.

Answer: CD

Explanation:

Here's a detailed justification for why options C and D are the correct benefits of YANG-push telemetry over traditional
methods like SNMP, while A, B, and E are incorrect:

Correct Answers (C and D):

C. You can precisely define data subscriptions: YANG-push allows for granular control over the specific data that is
streamed. Instead of pulling broad sets of metrics like SNMP does, you define exactly which data points are needed
using a YANG model's data tree and XPath or similar expressions. This precise subscription

http://imxing.cn/?p=464
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1610/b_1610_programmability_cg/model_driven_telemetry.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1610/b_1610_programmability_cg/model_driven_telemetry.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1610/b_1610_programmability_cg/model_driven_telemetry.html

reduces the volume of unnecessary data, optimizing bandwidth and processing overhead. This capability is crucial
for efficient and targeted network monitoring.

D. It scales better than SNMP: Traditional methods like SNMP rely on polling, where a central collector repeatedly asks
each device for data. As the network grows, this polling approach becomes inefficient due to increased network traffic
and processing load on both the collector and the devices. YANG-push, being event-driven, only sends updates when
data changes. This minimizes network chatter and allows for handling large numbers of devices effectively,
demonstrating superior scalability. It's aligned with principles of efficient resource utilization in cloud and network
infrastructure.

Incorrect Answers (A, B, and E):

A. The subscription requests use less bandwidth than SNMP polls: While the data delivery in YANG-push often
uses less bandwidth due to sending only change-based updates, the initial subscription requests themselves can be
more complex, containing detailed YANG paths. This statement is therefore an oversimplification.

B. It uses UDP rather than TCP: YANG-push can use various transports, with gRPC over TCP being a common choice
due to reliability and built-in security features. While UDP can be used, it is not a defining feature or a benefit in all
scenarios. The protocol choice is implementation dependent.

E. It is supported on more devices than SNMP: SNMP is a very mature and widely supported protocol that is
present across almost all network devices. While YANG-push adoption is growing, it is not as ubiquitous as SNMP. It is
not a practical benefit to assume higher device support.

In Summary: YANG-push's advantages center on its ability to provide targeted and scalable telemetry. This aligns
with cloud computing best practices of optimized resource usage and efficient monitoring of distributed
environments. Its event-driven model contributes to less network traffic and lower processing demands, making it a
superior choice for large-scale enterprise networks.

Authoritative Links:

Cisco's guide on Model-Driven Telemetry:https://www.cisco.com/c/en/us/solutions/enterprise/white-paper-c11-
741278.html - This document explains the principles and use cases of model-driven telemetry, focusing on its
advantages for network automation.

IETF RFC 7950: The YANG 1.1 Data Modeling Language:https://datatracker.ietf.org/doc/html/rfc7950 - This is the
authoritative source on the YANG data modeling language used in many model-driven telemetry solutions.

gRPC documentation:https://grpc.io/ - gRPC is commonly used as a transport mechanism for YANG-push, and this
provides relevant information regarding its features.

Question: 34

FILL BLANK -
Fill in the blank to complete the statement.

Answer:

Zerotouch provisia TP,

ig %(gol)ution for automating the configuration of a device when it is first

poWEFEE BN, using DHCP and TFTP.

Reference:

https://www.cisco.com/c/en/us/solutions/enterprise/white-paper-c11-741278.html
https://www.cisco.com/c/en/us/solutions/enterprise/white-paper-c11-741278.html
https://www.cisco.com/c/en/us/solutions/enterprise/white-paper-c11-741278.html
https://www.cisco.com/c/en/us/solutions/enterprise/white-paper-c11-741278.html
https://www.cisco.com/c/en/us/solutions/enterprise/white-paper-c11-741278.html
https://datatracker.ietf.org/doc/html/rfc7950
https://grpc.io/

https://developer.cisco.com/docs/ios-xe/#!day-zero-provisioning-quick-start-guide

Question: 35
Which tag is required when establishing a YANG-push subscription with a Cisco I0S XE device?

A.<yp:period>
B.<yp:subscription-result>
C.<yp:subscription-id>
D.<yp:xpath-filter>

Answer: D

Explanation:

The correct answer is D. yp:xpath-filter. When establishing a YANG-push subscription with a Cisco 10S XE device, the
<yp:xpath-filter> tag is mandatory to specify the precise data nodes the subscriber wishes to receive. YANG-push,
unlike traditional polling, pushes data updates only when changes occur to the specified data nodes. This minimizes
resource utilization and enhances efficiency. Without an XPath filter, the device wouldn't know which data to stream,
rendering the subscription ineffective. The <yp:xpath-filter> uses XPath syntax to pinpoint specific data points within
the YANG data model. This granularity is crucial for targeted data collection and analysis. In contrast, tags such as
<yp:period> define the reporting interval for periodic subscriptions (not relevant to change-driven YANG-push). The
<yp:subscription-result> tag is typically part of the response and not the request for establishing a subscription and
<yp:subscription-id> is assigned by the server after successful subscription setup, not used during initial request.
Hence, while other elements may play roles in various aspects of subscription management, the <yp:xpath-filter> tag is
specifically required during the initial establishment of a YANG-push subscription for filtering desired data.

Authoritative Links:

Cisco YANG Data Model Programmability Guide:https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide /b_16-12-programmability-config-
guide_chapter_0101.html This document provides a comprehensive understanding of YANG data modeling and its
programmability aspects on Cisco 10S XE. Specifically look for sections concerning YANG-push, filters, and data
streaming.

IETF RFC 7950 (The YANG 1.1 Data Modeling Language):https://datatracker.ietf.org/doc/html/rfc7950 This is the

official RFC defining the YANG language. Reading specific sections on data node filtering within YANG push
subscription would provide better understanding of the concepts.

IETF RFC 8641 (Subscription to YANG Notifications):https://datatracker.ietf.org/doc/html/rfc8641 Refer to this
RFC for specifics on subscription mechanisms and their parameters in context of YANG-based streaming, and where
xpath filters play a role.

Question: 36

https://developer.cisco.com/docs/ios-xe/#!day-zero-provisioning-quick-start-guide
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide/b_16-12-programmability-config-guide_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide/b_16-12-programmability-config-guide_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide/b_16-12-programmability-config-guide_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide/b_16-12-programmability-config-guide_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide/b_16-12-programmability-config-guide_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/16-12/b_16-12-programmability-config-guide/b_16-12-programmability-config-guide_chapter_0101.html
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8641

from device info import ios xel
from ncclient import manager
import xmltodict

netconf filter = open(‘filter-ietf-interfaces.xml”) .read()

if name == ' main ':
with manager.connect (host=ios_xe1 [“address”],
port=ios+xel [“port”],
username=ios+xel [“username”],
password=ios+xel [“password”],
hostkey verify=False) as m:

netconf reply = m.get(netcong filter)
intf details = xmltodict.parse (netconf reply.xml) [“rpc-reply”][“data”]
intf config = intf details[“interfaces”][“interface”]

intf:info = intf details[“interfaces-state”][“interface”]

print (w II)
print (“Interface Details:”)

print (™ Name: {(}”.format([| [“Yname”]))

print (™ Description: {}”.format(intf config[“description”]))

print (™ Type: {}”.format(intf config[“type”][“#text”]))

print (™ MAC Address: {}”.format(intf info[“phys-address”]))

print (" Packet Input: {}”.format (intf_info [“statistics”] [“"in-unicast-pkts”]))
print (“ Packet Output: {}”. format(intf_info [“statistics”] [VYout-unicast-pkts”]))

<filter>
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces”>
<interface>
<name>GigabitEthernet2</name>
</interface>
</interfaces>
<interfaces-state xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces”>
<interface>
<name>GigabitEthernet2</name>
</interface>
</interfaces-state>
</filter>

Refer to the exhibits. An engineer creates a Python scripts using ncclient to display interface information. The code
must be completed so that it can be tested.
Which expression completes the highlighted section in the format call?

A.intf info
B.intf_config
C.intf_get
D.intf_config[0]

Answer: B

Explanation:

Correct answer is B:intf_config.

Question: 37

from ncclient import manager

with manager.connect (
host=710.0.0.1",
port=12022,
username='cisco’ ,
password='cisco’ ,
hostkey verify=False,
allow agent=False,
look for keys=False,
device params={‘name’: ‘iosxe’},

) as m:

Refer to the exhibit. What is the correct ncclient method to use to collect the running configuration of a Cisco 10S XE device
that uses NETCONE?

A.config=m.copy_config(source="running')
B.config=m.get(source="running")
C.config=m.collect_config(source="running")

D.config=m.get_config(source="running")

Answer: D

Explanation:

config=m.get_config(source="running").

Question: 38

FILL BLANK -

Fill in the blanks to complete this API request against the Cisco SD_WAN vManage Statistics API, which specified a deviceld
of 260faff9-2d31-4312-cf96-
143b46db0211, a local-color of biz-internet, and a remote-color of gold.

https:IIvmanage-ip-address:8443Idataserviceldevicelapp-routelstatistics?[:] 260faff9-2d31-4312-

cf96-143b46db0211 [| biz-internet [] god

Answer:

devicelD=, local-color, remote-color

Explanation:

Reference:
https://sdwan-docs.cisco.com/Product_Documentation/Command_Reference/Command_Reference/vManage

_REST_APIs/Real-Time_Monitoring_APIs/

Application-Aware_Routing#Statistics

https://sdwan-docs.cisco.com/Product_Documentation/Command_Reference/Command_Reference/vManage_REST_APIs/Real-Time_Monitoring_APIs/
https://sdwan-docs.cisco.com/Product_Documentation/Command_Reference/Command_Reference/vManage_REST_APIs/Real-Time_Monitoring_APIs/

Question: 39

What does the command boot ipxe forever switch 1 perform when executed on a Cisco I0S XE device?

A.It continuously sends DHCP requests for iPXE until the device boots with an image.
B.It continuously sends DNS requests for iPXE until the device restarts.
C.It continuously sends DNS requests for iPXE until the device boots with an image.

D.It continuously sends DHCP requests for iPXE until the device restarts.

Answer: A

Explanation:

The command boot ipxe forever switch 1 on a Cisco [0S XE device initiates a continuous loop of iPXE boot attempts
using network interface 'switch 1'. iPXE (Preboot Execution Environment) is a network bootloader that allows a device
to load its operating system over the network rather than from local storage. When boot ipxe is invoked, the device first
attempts to obtain an IP address via DHCP (Dynamic Host Configuration Protocol). The 'forever' keyword specifies that
this process should continue indefinitely. The 'switch 1' part indicates the specific network interface used for the iPXE
boot process. Therefore, the command results in a persistent cycle of the device attempting to retrieve DHCP
information to subsequently initiate the iPXE process and boot from an image. The process involves DHCP discovery,
offer, request and ack. It continuously sends out DHCP requests. If an IP is received, it then attempts the iPXE boot
process and the cycle repeats.

Option A aligns perfectly with this functionality, as it describes the process of continuously sending DHCP requests for
iPXE until the device boots from a provided image over the network. The device is not rebooted as such, it remains up
and is trying to achieve a successful network boot. Options B and C are incorrect because iPXE primarily relies on DHCP
for IP assignment, not DNS, during its initial startup. Option D is incorrect because the device is not rebooted when it
fails; it instead restarts the iPXE boot process from a failed DHCP request cycle. This persistent network boot attempt
facilitates zero-touch provisioning and remote device management.

Further research can be done via the following links:

Cisco 10S XE Configuration Guides:https://www.cisco.com/c/en/us/support/ios-xml/index.html (Search for 'iPXE
boot' or 'network boot' within the relevant 10S XE release documentation.)

iPXE Project:https://ipxe.org/

DHCP Protocol RFC:https://datatracker.ietf.org/doc/html/rfc2131

Question: 40

https://www.cisco.com/c/en/us/support/ios-xml/index.html
https://ipxe.org/
https://datatracker.ietf.org/doc/html/rfc2131

headers = {'Content-Type': 'application/yang-data+json’',
'Acccept': 'application/yang-data+json'}

response =
requests.get ("https://10.10.20.48:443/restconf/data/ietf-interfaces:interfaces”,
auth=("cisco", "cisco_1234!"),
headers=headers,
verify=False
)

i=0
for interface in interfaces:
if "Loopback" in interface ["name"]:
print (interfaces[i] ["ietf-ip:ipv4"] ["address"] [0] ["ip"])
i=i+l

Refer to the exhibit. A Python script is used to configure a Cisco 10S XE device. The script must be updated to print the IP
addresses of all the loopback interfaces. Which statement should be added before the loop?

A.interfaces = response.json()[ietf-interfaces:interfaces]
B.interface = response.json()[ietf-interfaces:interfaces]
C.interface = response.json()[ietf-interfaces:interfaces][interface]

D.interfaces = response.json()[ietf-interfaces:interfaces][interface]

Answer: D

Explanation:

Reference:
https://blog.wimwauters.com/networkprogrammability /2020-04-04_restconf _python/

Question: 41

Which environment must be enabled to complete the Zero-Touch Provisioning process on a Cisco [0S XE device?

A.TCL

B.ZTP Open Service Container
C.EEM

D.Guest Shell

Answer: D

Explanation:

The correct answer is D. Guest Shell. Zero-Touch Provisioning (ZTP) on Cisco I0S XE devices relies on a lightweight,
containerized environment known as the Guest Shell. This environment provides the necessary execution space to run
scripts and software required for automated configuration. Specifically, upon initial boot, the Cisco device attempts to
discover a DHCP server offering option 43, which can contain a URL pointing to a configuration script. The Guest Shell,
being a Linux-based virtual environment within the 10S XE device, executes this script. The script usually involves
retrieving further configuration files, software images, or performing specific device setups. This automation eliminates
the need for manual configuration of each device, promoting efficient and scalable deployments. The Guest Shell's
Linux-based architecture supports commonly used scripting languages (e.g., Python) enabling customizable automation
routines. Options A, B, and C do not directly enable ZTP. TCL is a scripting language, but not the primary enabler for this
process.

https://blog.wimwauters.com/networkprogrammability/2020-04-04_restconf_python/

ZTP Open Service Container and EEM are related to other automation aspects but not the foundational
environment for ZTP. The guest shell provides the flexibility and programmability required for ZTP to
effectively operate within Cisco 10S XE.

Relevant link:

Cisco documentation on Guest Shell: https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/prog/configuration/169/b_169_programmability_config_guide/guest_shell.html

" Question: 42

FILL BLANK -
Fill in the blank to complete the statement.

is a solution for automating the configuration of a device when it is first powered on, using DHCP and
TFTP.

Answer:

Zero-touch provisioning

Explanation:

Reference:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_cg/zero_t
ouch_provisioning.html

"Question: 43

" DRAG DROP -

Drag and drop the characteristic from the left onto the monitoring type described on the right.
Select and Place:

Answer Area

Troubleshoot instant high spikes of CPU and
memory load on network devices.

Ask network devices for any metric at any ﬁm%_l

Prevent network devices from listeni yfor |
network connections.

Minimize the work required by device ag
pushing data as soon as t ta is geners

Answer:

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_config_guide/guest_shell.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_config_guide/guest_shell.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_config_guide/guest_shell.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_config_guide/guest_shell.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_cg/zero_touch_provisioning.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_cg/zero_touch_provisioning.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/169/b_169_programmability_cg/zero_touch_provisioning.html

Answer Area

Troubleshoot instant high spikes of CPU and Streaming Telemetry

memory load on network devices.
sailisd Troubleshoot instant high spikes of CPU and
memory load on network devices.

Ask network devices for any metric at any time.

Ask network devices for any metric at any time.

Prevent network devices from listening for
network connections.

Prevent network devices from listening for
Minimize the work required by device agents by network connections.
pushing data as soon as the data is generated.

Traditional Network Monitoring

Minimize the work required by device agents by
pushing data as soon as the data is generated.

Explanation:

Reference:
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/telemetry/70x/b-telemetry-cg-ncs5500-70x/b-teleme try-
cg-ncs5500-70x_chapter_010.html

Question: 44

"ietf-interfaces:interfaces": {
"interface": [
{
"name": "GigabitEthernetl"”,
"description": "MANAGEMENT INTERFACE",
"type": "iana-if-type:ethernetCsmacd",
"enabled": true,
"ietf-ip:ipvd": {
"address"™: |
{
"ip™a "10.10.20.48",
mmetmask™: "255.255.255.0"

]
},
"ietf-ip:ipve": {}

https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/telemetry/70x/b-telemetry-cg-ncs5500-70x/b-telemetry-cg-ncs5500-70x_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/telemetry/70x/b-telemetry-cg-ncs5500-70x/b-telemetry-cg-ncs5500-70x_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/iosxr/ncs5500/telemetry/70x/b-telemetry-cg-ncs5500-70x/b-telemetry-cg-ncs5500-70x_chapter_010.html

Refer to the exhibit. A RESTCONF GET request is sent to a Cisco I0S XE device. A portion of the response is shown in the
exhibit. Which module name corresponds to the YANG model referenced in the request?

A.ietf-interfaces:ietf-ipv4
B.iana-if-type:ethernetCsmacd
C.ietf-interfaces:interfaces
D.ietf-interfaces

Answer: D

Explanation:

Dietf-interfaces > MODULE:interfaces > CONTAINERietf-ipv > MODULE Through augmentation, the ietf-interfaces
model is “augmented” by the ietf-ip model to add [Pv4.

Question: 45

https://ios-xe:9443/restconf/data/ietf-routing:routing/routing-
instance=default/

<routing-instance xmlns:"urn:ietf:params:xml:ns:yang:ietf-
routing”™ xmlns:rt="urn:ietf:params:xml:ns:yang:ietf-routing">
<name>default</name>
<description>default-vrf [read-only]</description>
<routing-protocols>
<routing-protocol>
<type>static</type>
<name>l1</name>
<static-routes>
<ipv4 xmlns:"urn:ietf:params:xml:ns:yang:ietf-
ipvd-unicast-routing">
<route>
<destination-
prefix>0.0.0.0/0</destination-prefix>
<next-hop>
<outgoing-
interface>GigabitEthernetl</outgoing-interface>
</next-hop>
</route>
</ipv4>
</static-routes>
</routing-protocol>
</routing-protocols>

</routing-instance>
Rifﬂﬁ ‘ﬂ ‘hﬂ ﬂi‘hihi‘ “ RES I ‘ “h E ‘iE I Eﬂq"ﬂif ic contta 2 Cicca JOS YE dovice Thelhace ITW{- nd the

response in XML format are shown in the exhibit. What is the YANG data node that is referenced in the response?

A.route is a leaf list
B.static-routes is a container

C.static-routes is a list
D.routing-instance is a container

Answer: B

Explanation:

static-routes is a container.

